# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Example demonstrating how to access to options history for a given underlying equity security.
###
###
###
###
###
class BasicTemplateOptionsHistoryAlgorithm(QCAlgorithm):
''' This example demonstrates how to get access to options history for a given underlying equity security.'''
def initialize(self):
# this test opens position in the first day of trading, lives through stock split (7 for 1), and closes adjusted position on the second day
self.set_start_date(2015, 12, 24)
self.set_end_date(2015, 12, 24)
self.set_cash(1000000)
option = self.add_option("GOOG")
# add the initial contract filter
# SetFilter method accepts timedelta objects or integer for days.
# The following statements yield the same filtering criteria
option.set_filter(-2, +2, 0, 180)
# option.set_filter(-2,2, timedelta(0), timedelta(180))
# set the pricing model for Greeks and volatility
# find more pricing models https://www.quantconnect.com/lean/documentation/topic27704.html
option.price_model = OptionPriceModels.crank_nicolson_fd()
# set the warm-up period for the pricing model
self.set_warm_up(TimeSpan.from_days(4))
# set the benchmark to be the initial cash
self.set_benchmark(lambda x: 1000000)
def on_data(self,slice):
if self.is_warming_up: return
if not self.portfolio.invested:
for chain in slice.option_chains:
volatility = self.securities[chain.key.underlying].volatility_model.volatility
for contract in chain.value:
self.log("{0},Bid={1} Ask={2} Last={3} OI={4} sigma={5:.3f} NPV={6:.3f} \
delta={7:.3f} gamma={8:.3f} vega={9:.3f} beta={10:.2f} theta={11:.2f} IV={12:.2f}".format(
contract.symbol.value,
contract.bid_price,
contract.ask_price,
contract.last_price,
contract.open_interest,
volatility,
contract.theoretical_price,
contract.greeks.delta,
contract.greeks.gamma,
contract.greeks.vega,
contract.greeks.rho,
contract.greeks.theta / 365,
contract.implied_volatility))
def on_securities_changed(self, changes):
for change in changes.added_securities:
# only print options price
if change.symbol.value == "GOOG": return
history = self.history(change.symbol, 10, Resolution.MINUTE).sort_index(level='time', ascending=False)[:3]
for index, row in history.iterrows():
self.log("History: " + str(index[3])
+ ": " + index[4].strftime("%m/%d/%Y %I:%M:%S %p")
+ " > " + str(row.close))