# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * class BasicTemplateIntrinioEconomicData(QCAlgorithm): def initialize(self): '''initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2010, 1, 1) #Set Start Date self.set_end_date(2013, 12, 31) #Set End Date self.set_cash(100000) #Set Strategy Cash # Set your Intrinio user and password. IntrinioConfig.set_user_and_password("intrinio-username", "intrinio-password") # The Intrinio user and password can be also defined in the config.json file for local backtest. # Set Intrinio config to make 1 call each minute, default is 1 call each 5 seconds. #(1 call each minute is the free account limit for historical_data endpoint) IntrinioConfig.set_time_interval_between_calls(timedelta(minutes = 1)) # United States Oil Fund LP self.uso = self.add_equity("USO", Resolution.DAILY).symbol self.securities[self.uso].set_leverage(2) # United States Brent Oil Fund LP self.bno = self.add_equity("BNO", Resolution.DAILY).symbol self.securities[self.bno].set_leverage(2) self.add_data(IntrinioEconomicData, "$DCOILWTICO", Resolution.DAILY) self.add_data(IntrinioEconomicData, "$DCOILBRENTEU", Resolution.DAILY) self.ema_wti = self.ema("$DCOILWTICO", 10) def on_data(self, slice): '''on_data event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if (slice.contains_key("$DCOILBRENTEU") or slice.contains_key("$DCOILWTICO")): spread = slice["$DCOILBRENTEU"].value - slice["$DCOILWTICO"].value else: return if ((spread > 0 and not self.portfolio[self.bno].is_long) or (spread < 0 and not self.portfolio[self.uso].is_short)): self.set_holdings(self.bno, 0.25 * sign(spread)) self.set_holdings(self.uso, -0.25 * sign(spread))