# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Basic Template India Index Algorithm uses framework components to define the algorithm. ### ### ### ### class BasicTemplateIndiaIndexAlgorithm(QCAlgorithm): '''Basic template framework algorithm uses framework components to define the algorithm.''' def initialize(self): '''initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_account_currency("INR") #Set Account Currency self.set_start_date(2019, 1, 1) #Set Start Date self.set_end_date(2019, 1, 5) #Set End Date self.set_cash(1000000) #Set Strategy Cash # Use indicator for signal; but it cannot be traded self.nifty = self.add_index("NIFTY50", Resolution.MINUTE, Market.INDIA).symbol # Trade Index based ETF self.nifty_etf = self.add_equity("JUNIORBEES", Resolution.MINUTE, Market.INDIA).symbol # Set Order Properties as per the requirements for order placement self.default_order_properties = IndiaOrderProperties(Exchange.NSE) # Define indicator self._ema_slow = self.ema(self.nifty, 80) self._ema_fast = self.ema(self.nifty, 200) self.debug("numpy test >>> print numpy.pi: " + str(np.pi)) def on_data(self, data): '''on_data event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if not data.bars.contains_key(self.nifty) or not data.bars.contains_key(self.nifty_etf): return if not self._ema_slow.is_ready: return if self._ema_fast > self._ema_slow: if not self.portfolio.invested: self.market_ticket = self.market_order(self.nifty_etf, 1) else: self.liquidate() def on_end_of_algorithm(self): if self.portfolio[self.nifty].total_sale_volume > 0: raise AssertionError("Index is not tradable.")