# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Example algorithm for trading continuous future
###
class BasicTemplateFutureRolloverAlgorithm(QCAlgorithm):
###
### Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
###
def initialize(self):
self.set_start_date(2013, 10, 8)
self.set_end_date(2013, 12, 10)
self.set_cash(1000000)
self._symbol_data_by_symbol = {}
futures = [
Futures.Indices.SP_500_E_MINI
]
for future in futures:
# Requesting data
continuous_contract = self.add_future(future,
resolution = Resolution.DAILY,
extended_market_hours = True,
data_normalization_mode = DataNormalizationMode.BACKWARDS_RATIO,
data_mapping_mode = DataMappingMode.OPEN_INTEREST,
contract_depth_offset = 0
)
symbol_data = SymbolData(self, continuous_contract)
self._symbol_data_by_symbol[continuous_contract.symbol] = symbol_data
###
### on_data event is the primary entry point for your algorithm. Each new data point will be pumped in here.
###
### Slice object keyed by symbol containing the stock data
def on_data(self, slice):
for symbol, symbol_data in self._symbol_data_by_symbol.items():
# Call SymbolData.update() method to handle new data slice received
symbol_data.update(slice)
# Check if information in SymbolData class and new slice data are ready for trading
if not symbol_data.is_ready or not slice.bars.contains_key(symbol):
return
ema_current_value = symbol_data.EMA.current.value
if ema_current_value < symbol_data.price and not symbol_data.is_long:
self.market_order(symbol_data.mapped, 1)
elif ema_current_value > symbol_data.price and not symbol_data.is_short:
self.market_order(symbol_data.mapped, -1)
###
### Abstracted class object to hold information (state, indicators, methods, etc.) from a Symbol/Security in a multi-security algorithm
###
class SymbolData:
###
### Constructor to instantiate the information needed to be hold
###
def __init__(self, algorithm, future):
self._algorithm = algorithm
self._future = future
self.EMA = algorithm.ema(future.symbol, 20, Resolution.DAILY)
self.price = 0
self.is_long = False
self.is_short = False
self.reset()
@property
def symbol(self):
return self._future.symbol
@property
def mapped(self):
return self._future.mapped
@property
def is_ready(self):
return self.mapped is not None and self.EMA.is_ready
###
### Handler of new slice of data received
###
def update(self, slice):
if slice.symbol_changed_events.contains_key(self.symbol):
changed_event = slice.symbol_changed_events[self.symbol]
old_symbol = changed_event.old_symbol
new_symbol = changed_event.new_symbol
tag = f"Rollover - Symbol changed at {self._algorithm.time}: {old_symbol} -> {new_symbol}"
quantity = self._algorithm.portfolio[old_symbol].quantity
# Rolling over: to liquidate any position of the old mapped contract and switch to the newly mapped contract
self._algorithm.liquidate(old_symbol, tag = tag)
self._algorithm.market_order(new_symbol, quantity, tag = tag)
self.reset()
self.price = slice.bars[self.symbol].price if slice.bars.contains_key(self.symbol) else self.price
self.is_long = self._algorithm.portfolio[self.mapped].is_long
self.is_short = self._algorithm.portfolio[self.mapped].is_short
###
### reset RollingWindow/indicator to adapt to newly mapped contract, then warm up the RollingWindow/indicator
###
def reset(self):
self.EMA.reset()
self._algorithm.warm_up_indicator(self.symbol, self.EMA, Resolution.DAILY)
###
### disposal method to remove consolidator/update method handler, and reset RollingWindow/indicator to free up memory and speed
###
def dispose(self):
self.EMA.reset()