# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Abstract regression framework algorithm for multiple framework regression tests ### class BaseFrameworkRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 6, 1) self.set_end_date(2014, 6, 30) self.universe_settings.resolution = Resolution.HOUR self.universe_settings.data_normalization_mode = DataNormalizationMode.RAW symbols = [Symbol.create(ticker, SecurityType.EQUITY, Market.USA) for ticker in ["AAPL", "AIG", "BAC", "SPY"]] # Manually add AAPL and AIG when the algorithm starts self.set_universe_selection(ManualUniverseSelectionModel(symbols[:2])) # At midnight, add all securities every day except on the last data # With this procedure, the Alpha Model will experience multiple universe changes self.add_universe_selection(ScheduledUniverseSelectionModel( self.date_rules.every_day(), self.time_rules.midnight, lambda dt: symbols if dt < self.end_date - timedelta(1) else [])) self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(31), 0.025, None)) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(NullRiskManagementModel()) def on_end_of_algorithm(self): # The base implementation checks for active insights insights_count = len(self.insights.get_insights(lambda insight: insight.is_active(self.utc_time))) if insights_count != 0: raise AssertionError(f"The number of active insights should be 0. Actual: {insights_count}")