# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### This regression algorithm tests that we receive the expected data when ### we add future option contracts individually using ### class AddFutureOptionContractDataStreamingRegressionAlgorithm(QCAlgorithm): def initialize(self): self.on_data_reached = False self.invested = False self.symbols_received = [] self.expected_symbols_received = [] self.data_received = {} self.set_start_date(2020, 1, 4) self.set_end_date(2020, 1, 8) self.es20h20 = self.add_future_contract( Symbol.create_future(Futures.Indices.SP_500_E_MINI, Market.CME, datetime(2020, 3, 20)), Resolution.MINUTE).symbol self.es19m20 = self.add_future_contract( Symbol.create_future(Futures.Indices.SP_500_E_MINI, Market.CME, datetime(2020, 6, 19)), Resolution.MINUTE).symbol # Get option contract lists for 2020/01/05 (timedelta(days=1)) because Lean has local data for that date option_chains = list(self.option_chain_provider.get_option_contract_list(self.es20h20, self.time + timedelta(days=1))) option_chains += self.option_chain_provider.get_option_contract_list(self.es19m20, self.time + timedelta(days=1)) for option_contract in option_chains: self.expected_symbols_received.append(self.add_future_option_contract(option_contract, Resolution.MINUTE).symbol) def on_data(self, data: Slice): if not data.has_data: return self.on_data_reached = True has_option_quote_bars = False for qb in data.quote_bars.values(): if qb.symbol.security_type != SecurityType.FUTURE_OPTION: continue has_option_quote_bars = True self.symbols_received.append(qb.symbol) if qb.symbol not in self.data_received: self.data_received[qb.symbol] = [] self.data_received[qb.symbol].append(qb) if self.invested or not has_option_quote_bars: return if data.contains_key(self.es20h20) and data.contains_key(self.es19m20): self.set_holdings(self.es20h20, 0.2) self.set_holdings(self.es19m20, 0.2) self.invested = True def on_end_of_algorithm(self): self.symbols_received = list(set(self.symbols_received)) self.expected_symbols_received = list(set(self.expected_symbols_received)) if not self.on_data_reached: raise AssertionError("OnData() was never called.") if len(self.symbols_received) != len(self.expected_symbols_received): raise AssertionError(f"Expected {len(self.expected_symbols_received)} option contracts Symbols, found {len(self.symbols_received)}") missing_symbols = [expected_symbol.value for expected_symbol in self.expected_symbols_received if expected_symbol not in self.symbols_received] if any(missing_symbols): raise AssertionError(f'Symbols: "{", ".join(missing_symbols)}" were not found in OnData') for expected_symbol in self.expected_symbols_received: data = self.data_received[expected_symbol] for data_point in data: data_point.end_time = datetime(1970, 1, 1) non_dupe_data_count = len(set(data)) if non_dupe_data_count < 1000: raise AssertionError(f"Received too few data points. Expected >=1000, found {non_dupe_data_count} for {expected_symbol}")