# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Test algorithm using 'QCAlgorithm.add_alpha_model()' ### class AddAlphaModelAlgorithm(QCAlgorithm): def initialize(self): ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(100000) #Set Strategy Cash self.universe_settings.resolution = Resolution.DAILY spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA) fb = Symbol.create("FB", SecurityType.EQUITY, Market.USA) ibm = Symbol.create("IBM", SecurityType.EQUITY, Market.USA) # set algorithm framework models self.set_universe_selection(ManualUniverseSelectionModel([ spy, fb, ibm ])) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) self.add_alpha(OneTimeAlphaModel(spy)) self.add_alpha(OneTimeAlphaModel(fb)) self.add_alpha(OneTimeAlphaModel(ibm)) class OneTimeAlphaModel(AlphaModel): def __init__(self, symbol): self.symbol = symbol self.triggered = False def update(self, algorithm, data): insights = [] if not self.triggered: self.triggered = True insights.append(Insight.price( self.symbol, Resolution.DAILY, 1, InsightDirection.DOWN)) return insights