/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Linq; using QuantConnect.Data.UniverseSelection; using QuantConnect.Indicators; using QuantConnect.Securities; namespace QuantConnect.Algorithm.Framework.Selection { /// /// Provides an implementation of that subscribes /// to symbols with the larger delta by percentage between the two exponential moving average /// public class EmaCrossUniverseSelectionModel : FundamentalUniverseSelectionModel { private const decimal _tolerance = 0.01m; private readonly int _fastPeriod; private readonly int _slowPeriod; private readonly int _universeCount; // holds our coarse fundamental indicators by symbol private readonly ConcurrentDictionary _averages; /// /// Initializes a new instance of the class /// /// Fast EMA period /// Slow EMA period /// Maximum number of members of this universe selection /// The settings used when adding symbols to the algorithm, specify null to use algorithm.UniverseSettings public EmaCrossUniverseSelectionModel( int fastPeriod = 100, int slowPeriod = 300, int universeCount = 500, UniverseSettings universeSettings = null) : base(false, universeSettings) { _fastPeriod = fastPeriod; _slowPeriod = slowPeriod; _universeCount = universeCount; _averages = new ConcurrentDictionary(); } /// /// Defines the coarse fundamental selection function. /// /// The algorithm instance /// The coarse fundamental data used to perform filtering /// An enumerable of symbols passing the filter public override IEnumerable SelectCoarse(QCAlgorithm algorithm, IEnumerable coarse) { return (from cf in coarse // grab th SelectionData instance for this symbol let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData(_fastPeriod, _slowPeriod)) // Update returns true when the indicators are ready, so don't accept until they are where avg.Update(cf.EndTime, cf.AdjustedPrice) // only pick symbols who have their _fastPeriod-day ema over their _slowPeriod-day ema where avg.Fast > avg.Slow * (1 + _tolerance) // prefer symbols with a larger delta by percentage between the two averages orderby avg.ScaledDelta descending // we only need to return the symbol and return 'Count' symbols select cf.Symbol).Take(_universeCount); } // class used to improve readability of the coarse selection function private class SelectionData { public readonly ExponentialMovingAverage Fast; public readonly ExponentialMovingAverage Slow; public SelectionData(int fastPeriod, int slowPeriod) { Fast = new ExponentialMovingAverage(fastPeriod); Slow = new ExponentialMovingAverage(slowPeriod); } // computes an object score of how much large the fast is than the slow public decimal ScaledDelta => (Fast - Slow) / ((Fast + Slow) / 2m); // updates the EMAFast and EMASlow indicators, returning true when they're both ready public bool Update(DateTime time, decimal value) => Fast.Update(time, value) & Slow.Update(time, value); } } }