/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using Accord.Math; using Python.Runtime; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using QuantConnect.Scheduling; using QuantConnect.Util; namespace QuantConnect.Algorithm.Framework.Portfolio { /// /// Risk Parity Portfolio Construction Model /// /// Spinu, F. (2013). An algorithm for computing risk parity weights. Available at SSRN 2297383. /// Available at https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2297383 public class RiskParityPortfolioConstructionModel : PortfolioConstructionModel { private readonly int _lookback; private readonly int _period; private readonly Resolution _resolution; private readonly IPortfolioOptimizer _optimizer; private readonly Dictionary _symbolDataDict; /// /// Initialize the model /// /// The date rules used to define the next expected rebalance time in UTC /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. public RiskParityPortfolioConstructionModel(IDateRule rebalancingDateRules, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : this(rebalancingDateRules.ToFunc(), portfolioBias, lookback, period, resolution, optimizer) { } /// /// Initialize the model /// /// Rebalancing frequency /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. public RiskParityPortfolioConstructionModel(Resolution rebalanceResolution = Resolution.Daily, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : this(rebalanceResolution.ToTimeSpan(), portfolioBias, lookback, period, resolution, optimizer) { } /// /// Initialize the model /// /// Rebalancing frequency /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. public RiskParityPortfolioConstructionModel(TimeSpan timeSpan, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : this(dt => dt.Add(timeSpan), portfolioBias, lookback, period, resolution, optimizer) { } /// /// Initialize the model /// /// Rebalancing func or if a date rule, timedelta will be converted into func. /// For a given algorithm UTC DateTime the func returns the next expected rebalance time /// or null if unknown, in which case the function will be called again in the next loop. Returning current time /// will trigger rebalance. If null will be ignored /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. /// This is required since python net can not convert python methods into func nor resolve the correct /// constructor for the date rules parameter. /// For performance we prefer python algorithms using the C# implementation public RiskParityPortfolioConstructionModel(PyObject rebalance, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : this((Func)null, portfolioBias, lookback, period, resolution, optimizer) { SetRebalancingFunc(rebalance); } /// /// Initialize the model /// /// For a given algorithm UTC DateTime returns the next expected rebalance UTC time. /// Returning current time will trigger rebalance. If null will be ignored /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. public RiskParityPortfolioConstructionModel(Func rebalancingFunc, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : this(rebalancingFunc != null ? (Func)(timeUtc => rebalancingFunc(timeUtc)) : null, portfolioBias, lookback, period, resolution, optimizer) { } /// /// Initialize the model /// /// For a given algorithm UTC DateTime returns the next expected rebalance time /// or null if unknown, in which case the function will be called again in the next loop. Returning current time /// will trigger rebalance. /// Specifies the bias of the portfolio (Short, Long/Short, Long) /// Historical return lookback period /// The time interval of history price to calculate the weight /// The resolution of the history price /// The portfolio optimization algorithm. If the algorithm is not provided then the default will be mean-variance optimization. public RiskParityPortfolioConstructionModel(Func rebalancingFunc, PortfolioBias portfolioBias = PortfolioBias.LongShort, int lookback = 1, int period = 252, Resolution resolution = Resolution.Daily, IPortfolioOptimizer optimizer = null) : base(rebalancingFunc) { if (portfolioBias == PortfolioBias.Short) { throw new ArgumentException("Long position must be allowed in RiskParityPortfolioConstructionModel."); } _lookback = lookback; _period = period; _resolution = resolution; _optimizer = optimizer ?? new RiskParityPortfolioOptimizer(); _symbolDataDict = new Dictionary(); } /// /// Will determine the target percent for each insight /// /// The active insights to generate a target for /// A target percent for each insight protected override Dictionary DetermineTargetPercent(List activeInsights) { var targets = new Dictionary(); // If we have no insights just return an empty target list if (activeInsights.IsNullOrEmpty()) { return targets; } var symbols = activeInsights.Select(x => x.Symbol).ToList(); // Get symbols' returns var returns = _symbolDataDict.FormReturnsMatrix(symbols); // The optimization method processes the data frame var w = _optimizer.Optimize(returns); // process results if (w.Length > 0) { var sidx = 0; foreach (var symbol in symbols) { var weight = w[sidx]; targets[activeInsights.First(insight => insight.Symbol == symbol)] = weight; sidx++; } } return targets; } /// /// Event fired each time the we add/remove securities from the data feed /// /// The algorithm instance that experienced the change in securities /// The security additions and removals from the algorithm public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { base.OnSecuritiesChanged(algorithm, changes); // clean up data for removed securities foreach (var removed in changes.RemovedSecurities) { _symbolDataDict.Remove(removed.Symbol, out var removedSymbolData); algorithm.UnregisterIndicator(removedSymbolData.ROC); } if (changes.AddedSecurities.Count == 0) { return; } // initialize data for added securities foreach (var added in changes.AddedSecurities) { if (!_symbolDataDict.ContainsKey(added.Symbol)) { var symbolData = new ReturnsSymbolData(added.Symbol, _lookback, _period); _symbolDataDict[added.Symbol] = symbolData; algorithm.RegisterIndicator(added.Symbol, symbolData.ROC, _resolution); } } // warmup our indicators by pushing history through the consolidators algorithm.History(changes.AddedSecurities.Select(security => security.Symbol), _lookback * _period, _resolution) .PushThrough(bar => { ReturnsSymbolData symbolData; if (_symbolDataDict.TryGetValue(bar.Symbol, out symbolData)) { symbolData.Update(bar.EndTime, bar.Value); } }); } } }