/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System.Collections.Generic;
using System.Linq;
using Accord.Math;
using Accord.Math.Optimization;
using Accord.Statistics;
namespace QuantConnect.Algorithm.Framework.Portfolio
{
///
/// Provides an implementation of a minimum variance portfolio optimizer that calculate the optimal weights
/// with the weight range from -1 to 1 and minimize the portfolio variance with a target return of 2%
///
/// The budged constrain is scaled down/up to ensure that the sum of the absolute value of the weights is 1.
public class MinimumVariancePortfolioOptimizer : IPortfolioOptimizer
{
private double _lower;
private double _upper;
private double _targetReturn;
///
/// Initialize a new instance of
///
/// Lower bound
/// Upper bound
/// Target return
public MinimumVariancePortfolioOptimizer(double lower = -1, double upper = 1, double targetReturn = 0.02)
{
_lower = lower;
_upper = upper;
_targetReturn = targetReturn;
}
///
/// Sum of all weight is one: 1^T w = 1 / Σw = 1
///
/// number of variables
/// linear constaraint object
protected LinearConstraint GetBudgetConstraint(int size)
{
return new LinearConstraint(size)
{
CombinedAs = Vector.Create(size, 1.0),
ShouldBe = ConstraintType.EqualTo,
Value = 1.0
};
}
///
/// Boundary constraints on weights: lw ≤ w ≤ up
///
/// number of variables
/// enumeration of linear constaraint objects
protected IEnumerable GetBoundaryConditions(int size)
{
for (var i = 0; i < size; i++)
{
yield return new LinearConstraint(1)
{
VariablesAtIndices = new[] { i },
ShouldBe = ConstraintType.GreaterThanOrEqualTo,
Value = _lower
};
yield return new LinearConstraint(1)
{
VariablesAtIndices = new[] { i },
ShouldBe = ConstraintType.LesserThanOrEqualTo,
Value = _upper
};
}
}
///
/// Perform portfolio optimization for a provided matrix of historical returns and an array of expected returns
///
/// Matrix of annualized historical returns where each column represents a security and each row returns for the given date/time (size: K x N).
/// Array of double with the portfolio annualized expected returns (size: K x 1).
/// Multi-dimensional array of double with the portfolio covariance of annualized returns (size: K x K).
/// Array of double with the portfolio weights (size: K x 1)
public double[] Optimize(double[,] historicalReturns, double[] expectedReturns = null, double[,] covariance = null)
{
covariance ??= historicalReturns.Covariance();
var size = covariance.GetLength(0);
var returns = expectedReturns ?? historicalReturns.Mean(0);
var constraints = new List
{
// w^T µ ≥ β
new (size)
{
CombinedAs = returns,
ShouldBe = ConstraintType.EqualTo,
Value = _targetReturn
},
// Σw = 1
GetBudgetConstraint(size),
};
// lw ≤ w ≤ up
constraints.AddRange(GetBoundaryConditions(size));
// Setup solver
var optfunc = new QuadraticObjectiveFunction(covariance, Vector.Create(size, 0.0));
var solver = new GoldfarbIdnani(optfunc, constraints);
// Solve problem
var x0 = Vector.Create(size, 1.0 / size);
var success = solver.Minimize(Vector.Copy(x0));
if (!success) return x0;
// We cannot accept NaN
var solution = solver.Solution
.Select(x => x.IsNaNOrInfinity() ? 0 : x).ToArray();
// Scale the solution to ensure that the sum of the absolute weights is 1
var sumOfAbsoluteWeights = solution.Abs().Sum();
if (sumOfAbsoluteWeights.IsNaNOrZero()) return x0;
return solution.Divide(sumOfAbsoluteWeights);
}
}
}