/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System.Collections.Generic; using System.Linq; using Accord.Math; using Accord.Math.Optimization; using Accord.Statistics; namespace QuantConnect.Algorithm.Framework.Portfolio { /// /// Provides an implementation of a minimum variance portfolio optimizer that calculate the optimal weights /// with the weight range from -1 to 1 and minimize the portfolio variance with a target return of 2% /// /// The budged constrain is scaled down/up to ensure that the sum of the absolute value of the weights is 1. public class MinimumVariancePortfolioOptimizer : IPortfolioOptimizer { private double _lower; private double _upper; private double _targetReturn; /// /// Initialize a new instance of /// /// Lower bound /// Upper bound /// Target return public MinimumVariancePortfolioOptimizer(double lower = -1, double upper = 1, double targetReturn = 0.02) { _lower = lower; _upper = upper; _targetReturn = targetReturn; } /// /// Sum of all weight is one: 1^T w = 1 / Σw = 1 /// /// number of variables /// linear constaraint object protected LinearConstraint GetBudgetConstraint(int size) { return new LinearConstraint(size) { CombinedAs = Vector.Create(size, 1.0), ShouldBe = ConstraintType.EqualTo, Value = 1.0 }; } /// /// Boundary constraints on weights: lw ≤ w ≤ up /// /// number of variables /// enumeration of linear constaraint objects protected IEnumerable GetBoundaryConditions(int size) { for (var i = 0; i < size; i++) { yield return new LinearConstraint(1) { VariablesAtIndices = new[] { i }, ShouldBe = ConstraintType.GreaterThanOrEqualTo, Value = _lower }; yield return new LinearConstraint(1) { VariablesAtIndices = new[] { i }, ShouldBe = ConstraintType.LesserThanOrEqualTo, Value = _upper }; } } /// /// Perform portfolio optimization for a provided matrix of historical returns and an array of expected returns /// /// Matrix of annualized historical returns where each column represents a security and each row returns for the given date/time (size: K x N). /// Array of double with the portfolio annualized expected returns (size: K x 1). /// Multi-dimensional array of double with the portfolio covariance of annualized returns (size: K x K). /// Array of double with the portfolio weights (size: K x 1) public double[] Optimize(double[,] historicalReturns, double[] expectedReturns = null, double[,] covariance = null) { covariance ??= historicalReturns.Covariance(); var size = covariance.GetLength(0); var returns = expectedReturns ?? historicalReturns.Mean(0); var constraints = new List { // w^T µ ≥ β new (size) { CombinedAs = returns, ShouldBe = ConstraintType.EqualTo, Value = _targetReturn }, // Σw = 1 GetBudgetConstraint(size), }; // lw ≤ w ≤ up constraints.AddRange(GetBoundaryConditions(size)); // Setup solver var optfunc = new QuadraticObjectiveFunction(covariance, Vector.Create(size, 0.0)); var solver = new GoldfarbIdnani(optfunc, constraints); // Solve problem var x0 = Vector.Create(size, 1.0 / size); var success = solver.Minimize(Vector.Copy(x0)); if (!success) return x0; // We cannot accept NaN var solution = solver.Solution .Select(x => x.IsNaNOrInfinity() ? 0 : x).ToArray(); // Scale the solution to ensure that the sum of the absolute weights is 1 var sumOfAbsoluteWeights = solution.Abs().Sum(); if (sumOfAbsoluteWeights.IsNaNOrZero()) return x0; return solution.Divide(sumOfAbsoluteWeights); } } }