/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using MathNet.Numerics.Statistics; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.Framework.Alphas { /// /// This alpha model is designed to rank every pair combination by its pearson correlation /// and trade the pair with the hightest correlation /// This model generates alternating long ratio/short ratio insights emitted as a group /// public class PearsonCorrelationPairsTradingAlphaModel : BasePairsTradingAlphaModel { private readonly int _lookback; private readonly Resolution _resolution; private readonly double _minimumCorrelation; private Tuple _bestPair; /// /// Initializes a new instance of the class /// /// Lookback period of the analysis /// Analysis resolution /// The percent [0, 100] deviation of the ratio from the mean before emitting an insight /// The minimum correlation to consider a tradable pair public PearsonCorrelationPairsTradingAlphaModel(int lookback = 15, Resolution resolution = Resolution.Minute, decimal threshold = 1m, double minimumCorrelation = .5) : base(lookback, resolution, threshold) { _lookback = lookback; _resolution = resolution; _minimumCorrelation = minimumCorrelation; } /// /// Event fired each time the we add/remove securities from the data feed /// /// The algorithm instance that experienced the change in securities /// The security additions and removals from the algorithm public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { NotifiedSecurityChanges.UpdateCollection(Securities, changes); var symbols = Securities.Select(x => x.Symbol).ToArray(); var history = algorithm.History(symbols, _lookback, _resolution); var vectors = GetPriceVectors(history); if (vectors.LongLength == 0) { algorithm.Debug($"PearsonCorrelationPairsTradingAlphaModel.OnSecuritiesChanged(): The requested historical data does not have series of prices with the same date/time. Please consider increasing the looback period. Current lookback: {_lookback}"); } else { var pearsonMatrix = Correlation.PearsonMatrix(vectors).UpperTriangle(); var maxValue = pearsonMatrix.Enumerate().Where(x => Math.Abs(x) < 1).Max(); if (maxValue >= _minimumCorrelation) { var maxTuple = pearsonMatrix.Find(x => x == maxValue); _bestPair = Tuple.Create(symbols[maxTuple.Item1], symbols[maxTuple.Item2]); } } base.OnSecuritiesChanged(algorithm, changes); } /// /// Check whether the assets pass a pairs trading test /// /// The algorithm instance that experienced the change in securities /// The first asset's symbol in the pair /// The second asset's symbol in the pair /// True if the statistical test for the pair is successful public override bool HasPassedTest(QCAlgorithm algorithm, Symbol asset1, Symbol asset2) { return _bestPair != null && asset1 == _bestPair.Item1 && asset2 == _bestPair.Item2; } private double[][] GetPriceVectors(IEnumerable slices) { var symbols = Securities.Select(x => x.Symbol).ToArray(); var timeZones = Securities.ToDictionary(x => x.Symbol, y => y.Exchange.TimeZone); // Special case: daily data and securities from different timezone var isDailyAndMultipleTimeZone = _resolution == Resolution.Daily && timeZones.Values.Distinct().Count() > 1; var bars = new List(); if (isDailyAndMultipleTimeZone) { bars.AddRange(slices .GroupBy(x => x.Time.Date) .Where(x => x.Sum(k => k.Count) == symbols.Length) .SelectMany(x => x.SelectMany(y => y.Values))); } else { bars.AddRange(slices .Where(x => x.Count == symbols.Length) .SelectMany(x => x.Values)); } return bars .GroupBy(x => x.Symbol) .Select(x => { var array = x.Select(b => Math.Log((double)b.Price)).ToArray(); if (array.Length > 1) { for (var i = array.Length - 1; i > 0; i--) { array[i] = array[i] - array[i - 1]; } array[0] = array[1]; return array; } else { return new double[0]; } }).ToArray(); } } }