/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Indicators; using QuantConnect.Data.Market; using System.Collections.Generic; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting warming up with a lower resolution for speed is respected /// public class WarmupDailyResolutionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private long _previousSampleCount; private bool _warmedUpTradeBars; private bool _warmedUpQuoteBars; protected SimpleMovingAverage Sma { get; set; } protected TimeSpan ExpectedDataSpan { get; set; } protected TimeSpan ExpectedWarmupDataSpan { get; set; } public override void Initialize() { SetStartDate(2013, 10, 10); SetEndDate(2013, 10, 11); AddEquity("SPY", Resolution.Hour); ExpectedDataSpan = Resolution.Hour.ToTimeSpan(); SetWarmUp(TimeSpan.FromDays(3), Resolution.Daily); ExpectedWarmupDataSpan = TimeSpan.FromHours(6.5); Sma = SMA("SPY", 2); } public override void OnData(Slice slice) { if (Sma.Samples <= _previousSampleCount) { throw new RegressionTestException("Indicator was not updated!"); } _previousSampleCount = Sma.Samples; var tradeBars = slice.Get(); tradeBars.TryGetValue("SPY", out var trade); var quoteBars = slice.Get(); quoteBars.TryGetValue("SPY", out var quote); var expectedPeriod = ExpectedDataSpan; if (Time <= StartDate) { expectedPeriod = ExpectedWarmupDataSpan; if (trade != null && trade.IsFillForward || quote != null && quote.IsFillForward) { throw new RegressionTestException("Unexpected fill forwarded data!"); } } if (expectedPeriod == TimeSpan.FromHours(6.5)) { // let's assert the data's time are what we expect if (trade != null && trade.EndTime.Hour != 16) { throw new RegressionTestException($"Unexpected data end time! {trade.EndTime}"); } if (quote != null && quote.EndTime.Hour != 16) { throw new RegressionTestException($"Unexpected data end time! {quote.EndTime}"); } } else { // let's assert the data's time are what we expect if (trade != null && trade.EndTime.Ticks % expectedPeriod.Ticks != 0) { throw new RegressionTestException($"Unexpected data end time! {trade.EndTime}"); } if (quote != null && quote.EndTime.Ticks % expectedPeriod.Ticks != 0) { throw new RegressionTestException($"Unexpected data end time! {quote.EndTime}"); } } if (trade != null) { _warmedUpTradeBars |= IsWarmingUp; if (trade.Period != expectedPeriod) { throw new RegressionTestException($"Unexpected period for trade data point {trade.Period} expected {expectedPeriod}. IsWarmingUp: {IsWarmingUp}"); } } if (quote != null) { _warmedUpQuoteBars |= IsWarmingUp; if (quote.Period != expectedPeriod) { throw new RegressionTestException($"Unexpected period for quote data point {quote.Period} expected {expectedPeriod}. IsWarmingUp: {IsWarmingUp}"); } } } public override void OnEndOfAlgorithm() { if (!_warmedUpTradeBars) { throw new RegressionTestException("Did not assert data during warmup!"); } if (ExpectedWarmupDataSpan == TimeSpan.FromHours(6.5)) { if (_warmedUpQuoteBars) { throw new RegressionTestException("We should of not gotten any quote bar during warmup for daily resolution!"); } } else if (!_warmedUpQuoteBars) { throw new RegressionTestException("Did not assert data during warmup!"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 36; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }