/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Demostrates the use of for creating constant volume bar
///
///
///
///
public class VolumeRenkoConsolidatorAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy, _ibm;
private VolumeRenkoConsolidator _tradebarVolumeConsolidator, _tickVolumeConsolidator;
private SimpleMovingAverage _sma = new SimpleMovingAverage(10);
private bool _tickConsolidated = false;
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2013, 10, 11);
SetCash(100000);
_spy = AddEquity("SPY", Resolution.Minute).Symbol;
_tradebarVolumeConsolidator = new VolumeRenkoConsolidator(1000000);
_tradebarVolumeConsolidator.DataConsolidated += (sender, bar) => {
_sma.Update(bar.EndTime, bar.Value);
Debug($"SPY {bar.Time} to {bar.EndTime} :: O:{bar.Open} H:{bar.High} L:{bar.Low} C:{bar.Close} V:{bar.Volume}");
if (bar.Volume != 1000000)
{
throw new RegressionTestException("Volume of consolidated bar does not match set value!");
}
};
_ibm = AddEquity("IBM", Resolution.Tick).Symbol;
_tickVolumeConsolidator = new VolumeRenkoConsolidator(1000000);
_tickVolumeConsolidator.DataConsolidated += (sender, bar) => {
Debug($"IBM {bar.Time} to {bar.EndTime} :: O:{bar.Open} H:{bar.High} L:{bar.Low} C:{bar.Close} V:{bar.Volume}");
if (bar.Volume != 1000000)
{
throw new RegressionTestException("Volume of consolidated bar does not match set value!");
}
_tickConsolidated = true;
};
var history = History(new[] {_spy}, 1000, Resolution.Minute);
foreach (var slice in history)
{
_tradebarVolumeConsolidator.Update(slice[_spy]);
}
}
public override void OnData(Slice slice)
{
// Update by TradeBar
if (slice.Bars.ContainsKey(_spy))
{
_tradebarVolumeConsolidator.Update(slice.Bars[_spy]);
}
// Update by Tick
if (slice.Ticks.ContainsKey(_ibm))
{
foreach (var tick in slice.Ticks[_ibm])
{
_tickVolumeConsolidator.Update(tick);
}
}
if (_sma.IsReady && _sma.Current.Value < Securities[_spy].Price)
{
SetHoldings(_spy, 1m);
}
else
{
SetHoldings(_spy, 0m);
}
}
public override void OnEndOfAlgorithm()
{
if (!_tickConsolidated)
{
throw new RegressionTestException("Tick consolidator was never been called");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 698706;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 390;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "225"},
{"Average Win", "0.25%"},
{"Average Loss", "-0.05%"},
{"Compounding Annual Return", "-48.296%"},
{"Drawdown", "3.000%"},
{"Expectancy", "-0.190"},
{"Start Equity", "100000"},
{"End Equity", "99160.18"},
{"Net Profit", "-0.840%"},
{"Sharpe Ratio", "-0.987"},
{"Sortino Ratio", "-7.639"},
{"Probabilistic Sharpe Ratio", "41.344%"},
{"Loss Rate", "87%"},
{"Win Rate", "13%"},
{"Profit-Loss Ratio", "5.05"},
{"Alpha", "-2.224"},
{"Beta", "1.009"},
{"Annual Standard Deviation", "0.234"},
{"Annual Variance", "0.055"},
{"Information Ratio", "-33.249"},
{"Tracking Error", "0.066"},
{"Treynor Ratio", "-0.229"},
{"Total Fees", "$765.34"},
{"Estimated Strategy Capacity", "$4100000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "4497.77%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "bc7753018280859a55ca9834f21c511a"}
};
}
}