/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm used to test a fine and coarse selection methods
/// returning
///
public class UniverseUnchangedRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int NumberOfSymbolsFine = 2;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
// Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees.
// Commented so regression algorithm is more sensitive
//Settings.MinimumOrderMarginPortfolioPercentage = 0.005m;
SetStartDate(2014, 03, 25);
SetEndDate(2014, 04, 07);
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromDays(1), 0.025, null));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
AddUniverse(CoarseSelectionFunction, FineSelectionFunction);
}
public IEnumerable CoarseSelectionFunction(IEnumerable coarse)
{
// the first and second selection
if (Time.Date <= new DateTime(2014, 3, 26))
{
return new List
{
QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("AIG", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA)
};
}
// will skip fine selection
return Universe.Unchanged;
}
public IEnumerable FineSelectionFunction(IEnumerable fine)
{
// just the first selection
if (Time.Date == new DateTime(2014, 3, 25))
{
var sortedByPeRatio = fine.OrderByDescending(x => x.ValuationRatios.PERatio);
var topFine = sortedByPeRatio.Take(NumberOfSymbolsFine);
return topFine.Select(x => x.Symbol);
}
// the second selection will return unchanged, in the following fine selection will be skipped
return Universe.Unchanged;
}
// assert security changes, throw if called more than once
public override void OnSecuritiesChanged(SecurityChanges changes)
{
if (changes.AddedSecurities.Count != 2
|| Time != new DateTime(2014, 3, 25)
|| changes.AddedSecurities.All(security => security.Symbol != QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA))
|| changes.AddedSecurities.All(security => security.Symbol != QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA)))
{
throw new RegressionTestException("Unexpected security changes");
}
Log($"OnSecuritiesChanged({Time:o}):: {changes}");
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 63891;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "8"},
{"Average Win", "0%"},
{"Average Loss", "-0.01%"},
{"Compounding Annual Return", "-45.405%"},
{"Drawdown", "2.300%"},
{"Expectancy", "-1"},
{"Start Equity", "100000"},
{"End Equity", "97705.34"},
{"Net Profit", "-2.295%"},
{"Sharpe Ratio", "-3.77"},
{"Sortino Ratio", "-4.881"},
{"Probabilistic Sharpe Ratio", "10.598%"},
{"Loss Rate", "100%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.233"},
{"Beta", "0.705"},
{"Annual Standard Deviation", "0.097"},
{"Annual Variance", "0.009"},
{"Information Ratio", "-2.374"},
{"Tracking Error", "0.075"},
{"Treynor Ratio", "-0.52"},
{"Total Fees", "$19.98"},
{"Estimated Strategy Capacity", "$100000000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "7.33%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "62cae7349a5294699d7d71ac4ec42b09"}
};
}
}