/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; using System.Collections.Generic; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting the behavior of Universe.Selected collection /// public class UniverseSelectedRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private int _selectionCount; private Universe _universe; private readonly Queue> _expectedSymbols = new(new[] { new List { GetSymbol("SPY") }, new List { GetSymbol("AAPL"), GetSymbol("IWM") }, new List { GetSymbol("FB"), GetSymbol("AAPL"), GetSymbol("QQQ") }, }); public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 03, 25); SetEndDate(2014, 03, 27); _universe = AddUniverse(SelectionFunction); } public IEnumerable SelectionFunction(IEnumerable fundamentals) { var sortedByDollarVolume = fundamentals.OrderByDescending(x => x.DollarVolume); var top = sortedByDollarVolume.Skip(_selectionCount++).Take(_selectionCount).ToList(); return top.Select(x => x.Symbol); } public override void OnData(Slice slice) { if (_universe.Selected.Contains(QuantConnect.Symbol.Create("TSLA", SecurityType.Equity, Market.USA))) { throw new RegressionTestException($"TSLA shouldn't of been selected"); } if (Time.Date < new DateTime(2014, 03, 28)) { var expectedSymbols = _expectedSymbols.Dequeue(); if (!Enumerable.SequenceEqual(expectedSymbols, _universe.Selected)) { throw new RegressionTestException($"Unexpected selected symbols"); } } Buy(_universe.Selected.First(), 1); } public override void OnEndOfAlgorithm() { if (_selectionCount != 3) { throw new RegressionTestException($"Unexpected selection count {_selectionCount}"); } if (_universe.Selected.Count != 3 || _universe.Selected.Count == _universe.Members.Count) { throw new RegressionTestException($"Unexpected universe selected count {_universe.Selected.Count}"); } } private static Symbol GetSymbol(string ticker) => QuantConnect.Symbol.Create(ticker, SecurityType.Equity, Market.USA); /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 28319; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "3"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "-0.508%"}, {"Drawdown", "0.000%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "99995.81"}, {"Net Profit", "-0.004%"}, {"Sharpe Ratio", "-83.691"}, {"Sortino Ratio", "-83.691"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.011"}, {"Beta", "0.003"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "12.051"}, {"Tracking Error", "0.057"}, {"Treynor Ratio", "-4.776"}, {"Total Fees", "$2.00"}, {"Estimated Strategy Capacity", "$390000000000.00"}, {"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"}, {"Portfolio Turnover", "0.06%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "15ad776b527fdd43aae394badef6d206"} }; } }