/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using System.Collections.Generic;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting the behavior of Universe.Selected collection
///
public class UniverseSelectedRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private int _selectionCount;
private Universe _universe;
private readonly Queue> _expectedSymbols = new(new[]
{
new List { GetSymbol("SPY") },
new List { GetSymbol("AAPL"), GetSymbol("IWM") },
new List { GetSymbol("FB"), GetSymbol("AAPL"), GetSymbol("QQQ") },
});
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 25);
SetEndDate(2014, 03, 27);
_universe = AddUniverse(SelectionFunction);
}
public IEnumerable SelectionFunction(IEnumerable fundamentals)
{
var sortedByDollarVolume = fundamentals.OrderByDescending(x => x.DollarVolume);
var top = sortedByDollarVolume.Skip(_selectionCount++).Take(_selectionCount).ToList();
return top.Select(x => x.Symbol);
}
public override void OnData(Slice slice)
{
if (_universe.Selected.Contains(QuantConnect.Symbol.Create("TSLA", SecurityType.Equity, Market.USA)))
{
throw new RegressionTestException($"TSLA shouldn't of been selected");
}
if (Time.Date < new DateTime(2014, 03, 28))
{
var expectedSymbols = _expectedSymbols.Dequeue();
if (!Enumerable.SequenceEqual(expectedSymbols, _universe.Selected))
{
throw new RegressionTestException($"Unexpected selected symbols");
}
}
Buy(_universe.Selected.First(), 1);
}
public override void OnEndOfAlgorithm()
{
if (_selectionCount != 3)
{
throw new RegressionTestException($"Unexpected selection count {_selectionCount}");
}
if (_universe.Selected.Count != 3 || _universe.Selected.Count == _universe.Members.Count)
{
throw new RegressionTestException($"Unexpected universe selected count {_universe.Selected.Count}");
}
}
private static Symbol GetSymbol(string ticker) => QuantConnect.Symbol.Create(ticker, SecurityType.Equity, Market.USA);
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 28319;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "3"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "-0.508%"},
{"Drawdown", "0.000%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "99995.81"},
{"Net Profit", "-0.004%"},
{"Sharpe Ratio", "-83.691"},
{"Sortino Ratio", "-83.691"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.011"},
{"Beta", "0.003"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "12.051"},
{"Tracking Error", "0.057"},
{"Treynor Ratio", "-4.776"},
{"Total Fees", "$2.00"},
{"Estimated Strategy Capacity", "$390000000000.00"},
{"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"},
{"Portfolio Turnover", "0.06%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "15ad776b527fdd43aae394badef6d206"}
};
}
}