/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Basic algorithm demonstrating how to place stop limit orders.
///
///
///
///
public class StopLimitOrderRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _symbol;
private OrderTicket _buyOrderTicket;
private OrderTicket _sellOrderTicket;
private const decimal _tolerance = 0.001m;
private const int _fastPeriod = 30;
private const int _slowPeriod = 60;
private ExponentialMovingAverage _fast;
private ExponentialMovingAverage _slow;
public bool IsReady { get { return _fast.IsReady && _slow.IsReady; } }
public bool TrendIsUp { get { return IsReady && _fast > _slow * (1 + _tolerance); } }
public bool TrendIsDown { get { return IsReady && _fast < _slow * (1 + _tolerance); } }
///
/// Initialize the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 01, 01);
SetEndDate(2017, 01, 01);
SetCash(100000);
_symbol = AddEquity("SPY", Resolution.Daily).Symbol;
_fast = EMA(_symbol, _fastPeriod, Resolution.Daily);
_slow = EMA(_symbol, _slowPeriod, Resolution.Daily);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!IsReady)
{
return;
}
var security = Securities[_symbol];
if (_buyOrderTicket == null && TrendIsUp)
{
_buyOrderTicket = StopLimitOrder(_symbol, 100, stopPrice: security.High * 1.10m, limitPrice: security.High * 1.11m);
}
else if (_buyOrderTicket.Status == OrderStatus.Filled && _sellOrderTicket == null && TrendIsDown)
{
_sellOrderTicket = StopLimitOrder(_symbol, -100, stopPrice: security.Low * 0.99m, limitPrice: security.Low * 0.98m);
}
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status == OrderStatus.Filled)
{
var order = Transactions.GetOrderById(orderEvent.OrderId);
if (!((StopLimitOrder)order).StopTriggered)
{
throw new RegressionTestException("StopLimitOrder StopTriggered should haven been set if the order filled.");
}
if (orderEvent.Direction == OrderDirection.Buy)
{
var limitPrice = _buyOrderTicket.Get(OrderField.LimitPrice);
if (orderEvent.FillPrice > limitPrice)
{
throw new RegressionTestException($@"Buy stop limit order should have filled with price less than or equal to the limit price {
limitPrice}. Fill price: {orderEvent.FillPrice}");
}
}
else
{
var limitPrice = _sellOrderTicket.Get(OrderField.LimitPrice);
if (orderEvent.FillPrice < limitPrice)
{
throw new RegressionTestException($@"Sell stop limit order should have filled with price greater than or equal to the limit price {
limitPrice}. Fill price: {orderEvent.FillPrice}");
}
}
}
}
public override void OnEndOfAlgorithm()
{
if (_buyOrderTicket == null || _sellOrderTicket == null)
{
throw new RegressionTestException("Expected two orders (buy and sell) to have been filled at the end of the algorithm.");
}
if (_buyOrderTicket.Status != OrderStatus.Filled || _sellOrderTicket.Status != OrderStatus.Filled)
{
throw new RegressionTestException("Expected the two orders (buy and sell) to have been filled at the end of the algorithm.");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 8061;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "1.28%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0.318%"},
{"Drawdown", "1.500%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "101277.61"},
{"Net Profit", "1.278%"},
{"Sharpe Ratio", "-0.791"},
{"Sortino Ratio", "-0.433"},
{"Probabilistic Sharpe Ratio", "4.702%"},
{"Loss Rate", "0%"},
{"Win Rate", "100%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.009"},
{"Beta", "0.03"},
{"Annual Standard Deviation", "0.008"},
{"Annual Variance", "0"},
{"Information Ratio", "-0.963"},
{"Tracking Error", "0.104"},
{"Treynor Ratio", "-0.199"},
{"Total Fees", "$2.00"},
{"Estimated Strategy Capacity", "$6100000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "0.02%"},
{"Drawdown Recovery", "39"},
{"OrderListHash", "f315858f3f9e6a983cfcf887237f70fd"}
};
}
}