/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Orders; namespace QuantConnect.Algorithm.CSharp { /// /// Basic algorithm demonstrating how to place stop limit orders. /// /// /// /// public class StopLimitOrderRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _symbol; private OrderTicket _buyOrderTicket; private OrderTicket _sellOrderTicket; private const decimal _tolerance = 0.001m; private const int _fastPeriod = 30; private const int _slowPeriod = 60; private ExponentialMovingAverage _fast; private ExponentialMovingAverage _slow; public bool IsReady { get { return _fast.IsReady && _slow.IsReady; } } public bool TrendIsUp { get { return IsReady && _fast > _slow * (1 + _tolerance); } } public bool TrendIsDown { get { return IsReady && _fast < _slow * (1 + _tolerance); } } /// /// Initialize the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 01, 01); SetEndDate(2017, 01, 01); SetCash(100000); _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _fast = EMA(_symbol, _fastPeriod, Resolution.Daily); _slow = EMA(_symbol, _slowPeriod, Resolution.Daily); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!IsReady) { return; } var security = Securities[_symbol]; if (_buyOrderTicket == null && TrendIsUp) { _buyOrderTicket = StopLimitOrder(_symbol, 100, stopPrice: security.High * 1.10m, limitPrice: security.High * 1.11m); } else if (_buyOrderTicket.Status == OrderStatus.Filled && _sellOrderTicket == null && TrendIsDown) { _sellOrderTicket = StopLimitOrder(_symbol, -100, stopPrice: security.Low * 0.99m, limitPrice: security.Low * 0.98m); } } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Filled) { var order = Transactions.GetOrderById(orderEvent.OrderId); if (!((StopLimitOrder)order).StopTriggered) { throw new RegressionTestException("StopLimitOrder StopTriggered should haven been set if the order filled."); } if (orderEvent.Direction == OrderDirection.Buy) { var limitPrice = _buyOrderTicket.Get(OrderField.LimitPrice); if (orderEvent.FillPrice > limitPrice) { throw new RegressionTestException($@"Buy stop limit order should have filled with price less than or equal to the limit price { limitPrice}. Fill price: {orderEvent.FillPrice}"); } } else { var limitPrice = _sellOrderTicket.Get(OrderField.LimitPrice); if (orderEvent.FillPrice < limitPrice) { throw new RegressionTestException($@"Sell stop limit order should have filled with price greater than or equal to the limit price { limitPrice}. Fill price: {orderEvent.FillPrice}"); } } } } public override void OnEndOfAlgorithm() { if (_buyOrderTicket == null || _sellOrderTicket == null) { throw new RegressionTestException("Expected two orders (buy and sell) to have been filled at the end of the algorithm."); } if (_buyOrderTicket.Status != OrderStatus.Filled || _sellOrderTicket.Status != OrderStatus.Filled) { throw new RegressionTestException("Expected the two orders (buy and sell) to have been filled at the end of the algorithm."); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 8061; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "1.28%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0.318%"}, {"Drawdown", "1.500%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101277.61"}, {"Net Profit", "1.278%"}, {"Sharpe Ratio", "-0.791"}, {"Sortino Ratio", "-0.433"}, {"Probabilistic Sharpe Ratio", "4.702%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.009"}, {"Beta", "0.03"}, {"Annual Standard Deviation", "0.008"}, {"Annual Variance", "0"}, {"Information Ratio", "-0.963"}, {"Tracking Error", "0.104"}, {"Treynor Ratio", "-0.199"}, {"Total Fees", "$2.00"}, {"Estimated Strategy Capacity", "$6100000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "0.02%"}, {"Drawdown Recovery", "39"}, {"OrderListHash", "f315858f3f9e6a983cfcf887237f70fd"} }; } }