/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Data.Consolidators; using QuantConnect.Indicators; using QuantConnect.Interfaces; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm that asserts Stochastic indicator, registered with a different resolution consolidator, /// is warmed up properly by calling QCAlgorithm.WarmUpIndicator /// public class StochasticIndicatorWarmsUpProperlyRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private bool _dataPointsReceived; private Symbol _spy; private RelativeStrengthIndex _rsi; private RelativeStrengthIndex _rsiHistory; private Stochastic _sto; private Stochastic _stoHistory; public override void Initialize() { SetStartDate(2020, 1, 1); SetEndDate(2020, 2, 1); _spy = AddEquity("SPY", Resolution.Hour).Symbol; var dailyConsolidator = new TradeBarConsolidator(TimeSpan.FromDays(1)); _rsi = new RelativeStrengthIndex(14, MovingAverageType.Wilders); _sto = new Stochastic("FIRST", 10, 3, 3); RegisterIndicator(_spy, _rsi, dailyConsolidator); RegisterIndicator(_spy, _sto, dailyConsolidator); WarmUpIndicator(_spy, _rsi, TimeSpan.FromDays(1)); WarmUpIndicator(_spy, _sto, TimeSpan.FromDays(1)); _rsiHistory = new RelativeStrengthIndex(14, MovingAverageType.Wilders); _stoHistory = new Stochastic("SECOND", 10, 3, 3); RegisterIndicator(_spy, _rsiHistory, dailyConsolidator); RegisterIndicator(_spy, _stoHistory, dailyConsolidator); var history = History(_spy, Math.Max(_rsiHistory.WarmUpPeriod, _stoHistory.WarmUpPeriod), Resolution.Daily); // Warm up RSI indicator foreach (var bar in history) { _rsiHistory.Update(bar.EndTime, bar.Close); } // Warm up STO indicator foreach (var bar in history.TakeLast(_stoHistory.WarmUpPeriod)) { _stoHistory.Update(bar); } var indicators = new List() { _rsi, _sto, _rsiHistory, _stoHistory }; foreach (var indicator in indicators) { if (!indicator.IsReady) { throw new RegressionTestException($"{indicator.Name} should be ready, but it is not. Number of samples: {indicator.Samples}"); } } } public override void OnData(Slice slice) { if (IsWarmingUp) return; if (slice.ContainsKey(_spy)) { _dataPointsReceived = true; if (_rsi.Current.Value != _rsiHistory.Current.Value) { throw new RegressionTestException($"Values of indicators differ: {_rsi.Name}: {_rsi.Current.Value} | {_rsiHistory.Name}: {_rsiHistory.Current.Value}"); } if (_sto.StochK.Current.Value != _stoHistory.StochK.Current.Value) { throw new RegressionTestException($"Stoch K values of indicators differ: {_sto.Name}.StochK: {_sto.StochK.Current.Value} | {_stoHistory.Name}.StochK: {_stoHistory.StochK.Current.Value}"); } if (_sto.StochD.Current.Value != _stoHistory.StochD.Current.Value) { throw new RegressionTestException($"Stoch D values of indicators differ: {_sto.Name}.StochD: {_sto.StochD.Current.Value} | {_stoHistory.Name}.StochD: {_stoHistory.StochD.Current.Value}"); } } } public override void OnEndOfAlgorithm() { if (!_dataPointsReceived) { throw new Exception("No data points received"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 302; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 44; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "-0.016"}, {"Tracking Error", "0.101"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }