/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This regression test ensures that the Stochastic indicator and its sub-indicators
/// are properly initialized, warmed up, and returning meaningful values.
/// It verifies that they do not return zero after warm-up.
///
public class StochasticIndicatorAndSubIndicatorsWarmUpRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private bool _dataPointsReceived;
private Symbol _spy;
private Stochastic _stochasticIndicator;
private Stochastic _stochasticHistory;
public override void Initialize()
{
SetStartDate(2020, 1, 1);
SetEndDate(2020, 2, 1);
_spy = AddEquity("SPY", Resolution.Hour).Symbol;
var dailyConsolidator = new TradeBarConsolidator(TimeSpan.FromDays(1));
_stochasticIndicator = new Stochastic("FIRST", 14, 3, 3);
RegisterIndicator(_spy, _stochasticIndicator, dailyConsolidator);
WarmUpIndicator(_spy, _stochasticIndicator, TimeSpan.FromDays(1));
_stochasticHistory = new Stochastic("SECOND", 14, 3, 3);
RegisterIndicator(_spy, _stochasticHistory, dailyConsolidator);
// The warm-up period for the Stochastic indicator is calculated as:
// period + kPeriod + dPeriod - 2 = 14 + 3 + 3 - 2 = 18
// To ensure the indicator is fully warmed up, we request a history length
// significantly greater than 18.
var periods = 50;
// Get historical data for warming up the stochasticHistory
var history = History(_spy, periods, Resolution.Daily);
// Warm up STO indicator
foreach (var bar in history)
{
_stochasticHistory.Update(bar);
}
var indicators = new List() { _stochasticIndicator, _stochasticHistory };
// Ensure both indicators are ready
foreach (var indicator in indicators)
{
if (!indicator.IsReady)
{
throw new RegressionTestException($"{indicator.Name} should be ready, but it is not. Number of samples: {indicator.Samples}");
}
}
}
public override void OnData(Slice slice)
{
if (IsWarmingUp) return;
if (slice.ContainsKey(_spy))
{
_dataPointsReceived = true;
if (_stochasticIndicator.StochK.Current.Value == decimal.Zero || _stochasticHistory.StochK.Current.Value == decimal.Zero || _stochasticIndicator.FastStoch.Current.Value == decimal.Zero)
{
throw new RegressionTestException("The stochastic indicators should be ready by now and start returning values different from zero.");
}
if (_stochasticIndicator.StochK.Current.Value != _stochasticHistory.StochK.Current.Value)
{
throw new RegressionTestException($"Stoch K values of indicators differ: {_stochasticIndicator.Name}.StochK: {_stochasticIndicator.StochK.Current.Value} | {_stochasticHistory.Name}.StochK: {_stochasticHistory.StochK.Current.Value}");
}
if (_stochasticIndicator.StochD.Current.Value != _stochasticHistory.StochD.Current.Value)
{
throw new RegressionTestException($"Stoch D values of indicators differ: {_stochasticIndicator.Name}.StochD: {_stochasticIndicator.StochD.Current.Value} | {_stochasticHistory.Name}.StochD: {_stochasticHistory.StochD.Current.Value}");
}
}
}
public override void OnEndOfAlgorithm()
{
// Ensure that at least one data point was received
if (!_dataPointsReceived)
{
throw new RegressionTestException("No data points received");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 302;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 68;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-0.016"},
{"Tracking Error", "0.101"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}