/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Orders; using QuantConnect.Util; namespace QuantConnect.Algorithm.CSharp { /// /// This regression algorithm reproduces GH issue 3781 /// public class SetHoldingsMarketOnOpenRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _aapl; public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); AddEquity("SPY"); _aapl = AddEquity("AAPL", Resolution.Daily).Symbol; } public override void OnData(Slice slice) { if (!Portfolio.Invested) { if (Securities[_aapl].HasData) { SetHoldings(_aapl, 1); var orderTicket = Transactions.GetOpenOrderTickets(_aapl).Single(); } } } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Submitted) { var orderTickets = Transactions.GetOpenOrderTickets(_aapl).Single(); } else { // should be filled var orderTickets = Transactions.GetOpenOrderTickets(_aapl).ToList(ticket => ticket); if (!orderTickets.IsNullOrEmpty()) { throw new RegressionTestException($"We don't expect any open order tickets: {orderTickets[0]}"); } } if (orderEvent.OrderId > 1) { throw new RegressionTestException($"We only expect 1 order to be placed: {orderEvent}"); } Debug($"OnOrderEvent: {orderEvent}"); } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 5504; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "67.376%"}, {"Drawdown", "1.800%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100660.71"}, {"Net Profit", "0.661%"}, {"Sharpe Ratio", "2.515"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "54.049%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.772"}, {"Beta", "0.66"}, {"Annual Standard Deviation", "0.212"}, {"Annual Variance", "0.045"}, {"Information Ratio", "-8.483"}, {"Tracking Error", "0.17"}, {"Treynor Ratio", "0.806"}, {"Total Fees", "$32.32"}, {"Estimated Strategy Capacity", "$240000000.00"}, {"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"}, {"Portfolio Turnover", "20.39%"}, {"Drawdown Recovery", "2"}, {"OrderListHash", "9d9883e51ef7e9f15062e368cb60617c"} }; } }