/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This regression algorithm has examples of how to add an securities indicating the
/// with the method.
///
public class SetDataNormalizationModeOnAddSecurityAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly DataNormalizationMode _spyNormalizationMode = DataNormalizationMode.Raw;
private readonly DataNormalizationMode _ibmNormalizationMode = DataNormalizationMode.Adjusted;
private readonly DataNormalizationMode _aigNormalizationMode = DataNormalizationMode.TotalReturn;
private readonly DataNormalizationMode _esNormalizationMode = DataNormalizationMode.BackwardsRatio;
private readonly DataNormalizationMode _btcustdNormalizationMode = DataNormalizationMode.ForwardPanamaCanal;
private Dictionary> _priceRanges = new();
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2013, 10, 7);
var spyEquity = AddSecurity(SecurityType.Equity, "SPY", Resolution.Minute, dataNormalizationMode: _spyNormalizationMode);
CheckEquityDataNormalizationMode(spyEquity, _spyNormalizationMode);
_priceRanges.Add(spyEquity as Equity, new Tuple(167.28m, 168.37m));
var ibmEquity = AddSecurity(SecurityType.Equity, "IBM", Resolution.Minute, dataNormalizationMode: _ibmNormalizationMode);
CheckEquityDataNormalizationMode(ibmEquity, _ibmNormalizationMode);
_priceRanges.Add(ibmEquity as Equity, new Tuple(135.864131052m, 136.819606508m));
var aigEquity = AddSecurity(SecurityType.Equity, "AIG", Resolution.Minute, dataNormalizationMode: _aigNormalizationMode);
CheckEquityDataNormalizationMode(aigEquity, _aigNormalizationMode);
_priceRanges.Add(aigEquity as Equity, new Tuple(48.73m, 49.10m));
var esFutures = AddSecurity(SecurityType.Future, "ES", Resolution.Minute, dataNormalizationMode: _esNormalizationMode);
CheckEquityDataNormalizationMode(esFutures, _esNormalizationMode);
var btsustdCryto = AddSecurity(SecurityType.Crypto, "BTCUSDT", Resolution.Minute, dataNormalizationMode: _btcustdNormalizationMode);
CheckEquityDataNormalizationMode(btsustdCryto, _btcustdNormalizationMode);
}
public override void OnData(Slice slice)
{
foreach (var kvp in _priceRanges)
{
var security = kvp.Key;
var minExpectedPrice = kvp.Value.Item1;
var maxExpectedPrice = kvp.Value.Item2;
if (security.HasData && (security.Price < minExpectedPrice || security.Price > maxExpectedPrice))
{
throw new RegressionTestException($"{security.Symbol}: Price {security.Price} is out of expected range [{minExpectedPrice}, {maxExpectedPrice}]");
}
}
}
private void CheckEquityDataNormalizationMode(Security security, DataNormalizationMode expectedNormalizationMode)
{
var subscriptions = SubscriptionManager.Subscriptions.Where(x => x.Symbol == security.Symbol);
if (subscriptions.Any(x => x.DataNormalizationMode != expectedNormalizationMode))
{
throw new RegressionTestException($"Expected {security.Symbol} to have data normalization mode {expectedNormalizationMode} but was {subscriptions.First().DataNormalizationMode}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 5072;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}