/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Securities.Equity; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// This regression algorithm has examples of how to add an securities indicating the /// with the method. /// public class SetDataNormalizationModeOnAddSecurityAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly DataNormalizationMode _spyNormalizationMode = DataNormalizationMode.Raw; private readonly DataNormalizationMode _ibmNormalizationMode = DataNormalizationMode.Adjusted; private readonly DataNormalizationMode _aigNormalizationMode = DataNormalizationMode.TotalReturn; private readonly DataNormalizationMode _esNormalizationMode = DataNormalizationMode.BackwardsRatio; private readonly DataNormalizationMode _btcustdNormalizationMode = DataNormalizationMode.ForwardPanamaCanal; private Dictionary> _priceRanges = new(); public override void Initialize() { SetStartDate(2013, 10, 7); SetEndDate(2013, 10, 7); var spyEquity = AddSecurity(SecurityType.Equity, "SPY", Resolution.Minute, dataNormalizationMode: _spyNormalizationMode); CheckEquityDataNormalizationMode(spyEquity, _spyNormalizationMode); _priceRanges.Add(spyEquity as Equity, new Tuple(167.28m, 168.37m)); var ibmEquity = AddSecurity(SecurityType.Equity, "IBM", Resolution.Minute, dataNormalizationMode: _ibmNormalizationMode); CheckEquityDataNormalizationMode(ibmEquity, _ibmNormalizationMode); _priceRanges.Add(ibmEquity as Equity, new Tuple(135.864131052m, 136.819606508m)); var aigEquity = AddSecurity(SecurityType.Equity, "AIG", Resolution.Minute, dataNormalizationMode: _aigNormalizationMode); CheckEquityDataNormalizationMode(aigEquity, _aigNormalizationMode); _priceRanges.Add(aigEquity as Equity, new Tuple(48.73m, 49.10m)); var esFutures = AddSecurity(SecurityType.Future, "ES", Resolution.Minute, dataNormalizationMode: _esNormalizationMode); CheckEquityDataNormalizationMode(esFutures, _esNormalizationMode); var btsustdCryto = AddSecurity(SecurityType.Crypto, "BTCUSDT", Resolution.Minute, dataNormalizationMode: _btcustdNormalizationMode); CheckEquityDataNormalizationMode(btsustdCryto, _btcustdNormalizationMode); } public override void OnData(Slice slice) { foreach (var kvp in _priceRanges) { var security = kvp.Key; var minExpectedPrice = kvp.Value.Item1; var maxExpectedPrice = kvp.Value.Item2; if (security.HasData && (security.Price < minExpectedPrice || security.Price > maxExpectedPrice)) { throw new RegressionTestException($"{security.Symbol}: Price {security.Price} is out of expected range [{minExpectedPrice}, {maxExpectedPrice}]"); } } } private void CheckEquityDataNormalizationMode(Security security, DataNormalizationMode expectedNormalizationMode) { var subscriptions = SubscriptionManager.Subscriptions.Where(x => x.Symbol == security.Symbol); if (subscriptions.Any(x => x.DataNormalizationMode != expectedNormalizationMode)) { throw new RegressionTestException($"Expected {security.Symbol} to have data normalization mode {expectedNormalizationMode} but was {subscriptions.First().DataNormalizationMode}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 5072; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }