/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Securities; using QuantConnect.Securities.Equity; namespace QuantConnect.Algorithm.CSharp { /// /// Demonstration of how to use custom security properties. /// In this algorithm we trade a security based on the values of a slow and fast EMAs which are stored in the security itself. /// public class SecurityCustomPropertiesAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Equity _spy; private dynamic _dynamicSpy; public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); SetCash(100000); _spy = AddEquity("SPY", Resolution.Minute); // Using the dynamic interface to store our indicator as a custom property _dynamicSpy = _spy; _dynamicSpy.SlowEma = EMA(_spy.Symbol, 30, Resolution.Minute); // Using the generic interface to store our indicator as a custom property _spy.Add("FastEma", EMA(_spy.Symbol, 60, Resolution.Minute)); // Using the indexer to store our indicator as a custom property _spy["BB"] = BB(_spy.Symbol, 20, 1, MovingAverageType.Simple, Resolution.Minute); // Fee factor to be used by the custom fee model _dynamicSpy.FeeFactor = 0.00002m; _spy.SetFeeModel(new CustomFeeModel()); // This property will be used to store the prices used to calculate the fees in order to assert the correct fee factor is used. _dynamicSpy.OrdersFeesPrices = new Dictionary(); } public override void OnData(Slice slice) { if (!_dynamicSpy.FastEma.IsReady) { return; } if (!Portfolio.Invested) { // Using the dynamic interface to access the custom properties if (_dynamicSpy.SlowEma > _dynamicSpy.FastEma) { SetHoldings(_spy.Symbol, 1); } } // Using the generic interface to access the custom properties else if (_spy.Get("SlowEma") < _spy.Get("FastEma")) { Liquidate(_spy.Symbol); } // Using the indexer to access the custom properties var bb = _spy["BB"] as BollingerBands; Plot("BB", bb.UpperBand, bb.MiddleBand, bb.LowerBand); } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Filled) { var fee = orderEvent.OrderFee; var expectedFee = _dynamicSpy.OrdersFeesPrices[orderEvent.OrderId] * orderEvent.AbsoluteFillQuantity * _dynamicSpy.FeeFactor; if (fee.Value.Amount != expectedFee) { throw new RegressionTestException($"Custom fee model failed to set the correct fee. Expected: {expectedFee}. Actual: {fee.Value.Amount}"); } } } public override void OnEndOfAlgorithm() { if (Transactions.OrdersCount == 0) { throw new RegressionTestException("No orders executed"); } } /// /// This custom fee is implemented for demonstration purposes only. /// private class CustomFeeModel : FeeModel { public CustomFeeModel() { } public override OrderFee GetOrderFee(OrderFeeParameters parameters) { var security = parameters.Security; // custom fee math using the fee factor stored in security instance var hasFeeFactor = security.TryGet("FeeFactor", out var feeFactor); if (!hasFeeFactor) { feeFactor = 0.00001m; } // Store the price used to calculate the fee for this order ((dynamic)security).OrdersFeesPrices[parameters.Order.Id] = security.Price; var fee = Math.Max(1m, security.Price * parameters.Order.AbsoluteQuantity * feeFactor); return new OrderFee(new CashAmount(fee, "USD")); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 3943; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "31"}, {"Average Win", "0.43%"}, {"Average Loss", "-0.08%"}, {"Compounding Annual Return", "84.608%"}, {"Drawdown", "0.800%"}, {"Expectancy", "0.628"}, {"Start Equity", "100000"}, {"End Equity", "100786.91"}, {"Net Profit", "0.787%"}, {"Sharpe Ratio", "12.062"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "88.912%"}, {"Loss Rate", "73%"}, {"Win Rate", "27%"}, {"Profit-Loss Ratio", "5.11"}, {"Alpha", "0.258"}, {"Beta", "0.342"}, {"Annual Standard Deviation", "0.077"}, {"Annual Variance", "0.006"}, {"Information Ratio", "-7.082"}, {"Tracking Error", "0.147"}, {"Treynor Ratio", "2.73"}, {"Total Fees", "$59.78"}, {"Estimated Strategy Capacity", "$7300000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "597.29%"}, {"Drawdown Recovery", "2"}, {"OrderListHash", "947ae7fbc63fb8cc499f96ac92ee3394"} }; } }