/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; using QuantConnect.Orders; using QuantConnect.Interfaces; using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// This example algorithm defines its own custom coarse/fine fundamental selection model /// with sector weighted portfolio /// public class SectorWeightingFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly Dictionary _targets = new Dictionary(); public override void Initialize() { // Set requested data resolution UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 04, 02); SetEndDate(2014, 04, 06); SetCash(100000); SetUniverseSelection(new FineFundamentalUniverseSelectionModel(SelectCoarse, SelectFine)); SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, QuantConnect.Time.OneDay)); SetPortfolioConstruction(new SectorWeightingPortfolioConstructionModel()); Func toSymbol = t => QuantConnect.Symbol.Create(t, SecurityType.Equity, Market.USA); _targets.Add(toSymbol("AAPL"), .25m); _targets.Add(toSymbol("AIG"), .5m); _targets.Add(toSymbol("IBM"), .25m); _targets.Add(toSymbol("GOOG"), .5m); _targets.Add(toSymbol("BAC"), .5m); _targets.Add(toSymbol("SPY"), 0); } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status.IsFill()) { var symbol = orderEvent.Symbol; var security = Securities[symbol]; var absoluteBuyingPower = security.BuyingPowerModel .GetReservedBuyingPowerForPosition(new ReservedBuyingPowerForPositionParameters(security)) .AbsoluteUsedBuyingPower // See GH issue 4107 * security.BuyingPowerModel.GetLeverage(security); var portfolioShare = absoluteBuyingPower / Portfolio.TotalPortfolioValue; Debug($"Order event: {orderEvent}. Absolute buying power: {absoluteBuyingPower}"); // Checks whether the portfolio share of a given symbol matches its target // Only considers the buy orders, because holding value is zero otherwise if (Math.Abs(_targets[symbol] - portfolioShare) > 0.01m && orderEvent.Direction == OrderDirection.Buy) { throw new RegressionTestException($"Target for {symbol}: expected {_targets[symbol]}, actual: {portfolioShare}"); } } } private IEnumerable SelectCoarse(IEnumerable coarse) { return Time.Date < new DateTime(2014, 4, 4) // IndustryTemplateCode of AAPL and IBM is N and AIG is I ? _targets.Keys.Take(3) // IndustryTemplateCode of GOOG is N and BAC is B. SPY have no fundamentals : _targets.Keys.Skip(3); } private IEnumerable SelectFine(IEnumerable fine) => fine.Select(f => f.Symbol); /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 52; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "9"}, {"Average Win", "0.00%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "-67.218%"}, {"Drawdown", "0.900%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "99087.50"}, {"Net Profit", "-0.912%"}, {"Sharpe Ratio", "-12.084"}, {"Sortino Ratio", "-12.084"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.291"}, {"Beta", "0.491"}, {"Annual Standard Deviation", "0.057"}, {"Annual Variance", "0.003"}, {"Information Ratio", "2.114"}, {"Tracking Error", "0.059"}, {"Treynor Ratio", "-1.41"}, {"Total Fees", "$14.98"}, {"Estimated Strategy Capacity", "$150000000.00"}, {"Lowest Capacity Asset", "IBM R735QTJ8XC9X"}, {"Portfolio Turnover", "33.44%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "e3f762555cf5848a2e79c1e23b11ca32"} }; } }