/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This example algorithm defines its own custom coarse/fine fundamental selection model
/// with equally weighted portfolio and a maximum sector exposure
///
public class SectorExposureRiskFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 25);
SetEndDate(2014, 04, 07);
SetCash(100000);
SetUniverseSelection(new FineFundamentalUniverseSelectionModel(SelectCoarse, SelectFine));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, QuantConnect.Time.OneDay));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
SetRiskManagement(new MaximumSectorExposureRiskManagementModel());
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status.IsFill())
{
Debug($"Order event: {orderEvent}. Holding value: {Securities[orderEvent.Symbol].Holdings.AbsoluteHoldingsValue}");
}
}
private IEnumerable SelectCoarse(IEnumerable coarse)
{
var tickers = Time.Date < new DateTime(2014, 4, 1)
? new[] { "AAPL", "AIG", "IBM" }
: new[] { "GOOG", "BAC", "SPY" };
return tickers.Select(x => QuantConnect.Symbol.Create(x, SecurityType.Equity, Market.USA));
}
private IEnumerable SelectFine(IEnumerable fine) => fine.Select(f => f.Symbol);
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 7246;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "16"},
{"Average Win", "0.00%"},
{"Average Loss", "-0.09%"},
{"Compounding Annual Return", "-89.499%"},
{"Drawdown", "8.300%"},
{"Expectancy", "-0.831"},
{"Start Equity", "100000"},
{"End Equity", "91718.76"},
{"Net Profit", "-8.281%"},
{"Sharpe Ratio", "-3.238"},
{"Sortino Ratio", "-2.445"},
{"Probabilistic Sharpe Ratio", "0.000%"},
{"Loss Rate", "83%"},
{"Win Rate", "17%"},
{"Profit-Loss Ratio", "0.02"},
{"Alpha", "-0.762"},
{"Beta", "0.276"},
{"Annual Standard Deviation", "0.252"},
{"Annual Variance", "0.063"},
{"Information Ratio", "-2.402"},
{"Tracking Error", "0.26"},
{"Treynor Ratio", "-2.954"},
{"Total Fees", "$25.93"},
{"Estimated Strategy Capacity", "$54000000.00"},
{"Lowest Capacity Asset", "AIG R735QTJ8XC9X"},
{"Portfolio Turnover", "11.09%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "370ce70c920470fa54d855d700a7bf48"}
};
}
}