/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; using QuantConnect.Orders; using QuantConnect.Interfaces; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// /// This example algorithm defines its own custom coarse/fine fundamental selection model /// with equally weighted portfolio and a maximum sector exposure /// public class SectorExposureRiskFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { public override void Initialize() { // Set requested data resolution UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 03, 25); SetEndDate(2014, 04, 07); SetCash(100000); SetUniverseSelection(new FineFundamentalUniverseSelectionModel(SelectCoarse, SelectFine)); SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, QuantConnect.Time.OneDay)); SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel()); SetRiskManagement(new MaximumSectorExposureRiskManagementModel()); } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status.IsFill()) { Debug($"Order event: {orderEvent}. Holding value: {Securities[orderEvent.Symbol].Holdings.AbsoluteHoldingsValue}"); } } private IEnumerable SelectCoarse(IEnumerable coarse) { var tickers = Time.Date < new DateTime(2014, 4, 1) ? new[] { "AAPL", "AIG", "IBM" } : new[] { "GOOG", "BAC", "SPY" }; return tickers.Select(x => QuantConnect.Symbol.Create(x, SecurityType.Equity, Market.USA)); } private IEnumerable SelectFine(IEnumerable fine) => fine.Select(f => f.Symbol); /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 7246; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "16"}, {"Average Win", "0.00%"}, {"Average Loss", "-0.09%"}, {"Compounding Annual Return", "-89.499%"}, {"Drawdown", "8.300%"}, {"Expectancy", "-0.831"}, {"Start Equity", "100000"}, {"End Equity", "91718.76"}, {"Net Profit", "-8.281%"}, {"Sharpe Ratio", "-3.238"}, {"Sortino Ratio", "-2.445"}, {"Probabilistic Sharpe Ratio", "0.000%"}, {"Loss Rate", "83%"}, {"Win Rate", "17%"}, {"Profit-Loss Ratio", "0.02"}, {"Alpha", "-0.762"}, {"Beta", "0.276"}, {"Annual Standard Deviation", "0.252"}, {"Annual Variance", "0.063"}, {"Information Ratio", "-2.402"}, {"Tracking Error", "0.26"}, {"Treynor Ratio", "-2.954"}, {"Total Fees", "$25.93"}, {"Estimated Strategy Capacity", "$54000000.00"}, {"Lowest Capacity Asset", "AIG R735QTJ8XC9X"}, {"Portfolio Turnover", "11.09%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "370ce70c920470fa54d855d700a7bf48"} }; } }