/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Util; using QuantConnect.Interfaces; using QuantConnect.Securities.Option; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting that we can liquidate an existing option position with an option strategy. /// /// This specific case rolls out a front month put to a back month put using a calendar spread, working in two steps: /// 1. Short front month put /// 2. Roll out front month put to back month put using a calendar spread. /// public class RollOutFrontMonthToBackMonthOptionUsingCalendarSpreadRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _symbol; private Symbol _frontMonthPutSymbol; private Symbol _backMonthPutSymbol; private decimal _atmStrike; private bool _done; public override void Initialize() { SetStartDate(2015, 12, 24); SetEndDate(2015, 12, 24); SetCash(500000); var option = AddOption("GOOG", Resolution.Minute); option.SetFilter(universe => universe.Strikes(-1, 1).Expiration(0, 62)); _symbol = option.Symbol; } public override void OnData(Slice slice) { if (_done || !slice.OptionChains.TryGetValue(_symbol, out var chain) || !chain.Any()) { return; } var isFirstStep = !Portfolio.Invested; if (isFirstStep) { _atmStrike = chain.MinBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).Strike; } var puts = chain.Where(x => x.Strike == _atmStrike && x.Right == OptionRight.Put).ToList(); if (isFirstStep) { if (puts.Count == 0) { return; } // Step 1: short front month put _frontMonthPutSymbol = puts.MinBy(x => x.Expiry).Symbol; Sell(_frontMonthPutSymbol, 1); } else if (puts.Count > 1) { // Step 2: roll out front month put to back month put using a calendar spread. // Near expiry contract would be the same we shorted in step 1 (closets expiry, same strike), // which we want to roll out to the farther expiry var frontMonthExpiry = puts[0].Expiry; var backMonthExpiry = puts[puts.Count - 1].Expiry; var optionStrategy = OptionStrategies.PutCalendarSpread(_symbol, _atmStrike, frontMonthExpiry, backMonthExpiry); var tickets = Sell(optionStrategy, 1); if (!tickets.Any(ticket => ticket.Symbol == _frontMonthPutSymbol && ticket.Quantity == 1)) { throw new RegressionTestException($"Expected to find a ticket for {_frontMonthPutSymbol} with quantity {-Securities[_frontMonthPutSymbol].Holdings.Quantity}"); } _backMonthPutSymbol = tickets.First(ticket => ticket.Symbol != _frontMonthPutSymbol).Symbol; _done = true; } } public override void OnEndOfAlgorithm() { if (!_done) { throw new RegressionTestException("Expected the algorithm to have bought and sold a Bull Call Spread and a Bear Put Spread."); } if (Portfolio.Positions.Groups.Count != 1) { throw new RegressionTestException($"Expected 1 position group, found {Portfolio.Positions.Groups.Count}"); } var positions = Portfolio.Positions.Groups.Single().Positions.ToList(); if (positions.Count != 1) { throw new RegressionTestException($"Expected 1 position in the position group, found {positions.Count}"); } // The position should correspond to the far expiry contract var position = positions[0]; if (position.Symbol != _backMonthPutSymbol) { throw new RegressionTestException($"Expected final portfolio position to be {_backMonthPutSymbol}, found {position.Symbol}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 8151; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "3"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "500000"}, {"End Equity", "499792"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$3.00"}, {"Estimated Strategy Capacity", "$190000.00"}, {"Lowest Capacity Asset", "GOOCV 306CZK4DP0LC6|GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "1.19%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "007124f0e2e4f0048f367782ef7fcd02"} }; } }