/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Util;
using QuantConnect.Interfaces;
using QuantConnect.Securities.Option;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting that we can liquidate an existing option position with an option strategy.
///
/// This specific case rolls out a front month put to a back month put using a calendar spread, working in two steps:
/// 1. Short front month put
/// 2. Roll out front month put to back month put using a calendar spread.
///
public class RollOutFrontMonthToBackMonthOptionUsingCalendarSpreadRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _symbol;
private Symbol _frontMonthPutSymbol;
private Symbol _backMonthPutSymbol;
private decimal _atmStrike;
private bool _done;
public override void Initialize()
{
SetStartDate(2015, 12, 24);
SetEndDate(2015, 12, 24);
SetCash(500000);
var option = AddOption("GOOG", Resolution.Minute);
option.SetFilter(universe => universe.Strikes(-1, 1).Expiration(0, 62));
_symbol = option.Symbol;
}
public override void OnData(Slice slice)
{
if (_done || !slice.OptionChains.TryGetValue(_symbol, out var chain) || !chain.Any())
{
return;
}
var isFirstStep = !Portfolio.Invested;
if (isFirstStep)
{
_atmStrike = chain.MinBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).Strike;
}
var puts = chain.Where(x => x.Strike == _atmStrike && x.Right == OptionRight.Put).ToList();
if (isFirstStep)
{
if (puts.Count == 0)
{
return;
}
// Step 1: short front month put
_frontMonthPutSymbol = puts.MinBy(x => x.Expiry).Symbol;
Sell(_frontMonthPutSymbol, 1);
}
else if (puts.Count > 1)
{
// Step 2: roll out front month put to back month put using a calendar spread.
// Near expiry contract would be the same we shorted in step 1 (closets expiry, same strike),
// which we want to roll out to the farther expiry
var frontMonthExpiry = puts[0].Expiry;
var backMonthExpiry = puts[puts.Count - 1].Expiry;
var optionStrategy = OptionStrategies.PutCalendarSpread(_symbol, _atmStrike, frontMonthExpiry, backMonthExpiry);
var tickets = Sell(optionStrategy, 1);
if (!tickets.Any(ticket => ticket.Symbol == _frontMonthPutSymbol && ticket.Quantity == 1))
{
throw new RegressionTestException($"Expected to find a ticket for {_frontMonthPutSymbol} with quantity {-Securities[_frontMonthPutSymbol].Holdings.Quantity}");
}
_backMonthPutSymbol = tickets.First(ticket => ticket.Symbol != _frontMonthPutSymbol).Symbol;
_done = true;
}
}
public override void OnEndOfAlgorithm()
{
if (!_done)
{
throw new RegressionTestException("Expected the algorithm to have bought and sold a Bull Call Spread and a Bear Put Spread.");
}
if (Portfolio.Positions.Groups.Count != 1)
{
throw new RegressionTestException($"Expected 1 position group, found {Portfolio.Positions.Groups.Count}");
}
var positions = Portfolio.Positions.Groups.Single().Positions.ToList();
if (positions.Count != 1)
{
throw new RegressionTestException($"Expected 1 position in the position group, found {positions.Count}");
}
// The position should correspond to the far expiry contract
var position = positions[0];
if (position.Symbol != _backMonthPutSymbol)
{
throw new RegressionTestException($"Expected final portfolio position to be {_backMonthPutSymbol}, found {position.Symbol}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 8151;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "3"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "500000"},
{"End Equity", "499792"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$3.00"},
{"Estimated Strategy Capacity", "$190000.00"},
{"Lowest Capacity Asset", "GOOCV 306CZK4DP0LC6|GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "1.19%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "007124f0e2e4f0048f367782ef7fcd02"}
};
}
}