/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.IO;
using QuantConnect.Data;
using QuantConnect.Data.Custom.IconicTypes;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Tests the consolidation of custom data with random data
///
public class CustomDataUnlinkedTradeBarIconicTypeConsolidationRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _vix;
private BollingerBands _bb;
private bool _invested;
///
/// Initializes the algorithm with fake "VIX" data
///
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2013, 10, 11);
SetCash(100000);
_vix = AddData("VIX", Resolution.Daily).Symbol;
_bb = BB(_vix, 30, 2, MovingAverageType.Simple, Resolution.Daily);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (_bb.Current.Value == 0)
{
throw new RegressionTestException("Bollinger Band value is zero when we expect non-zero value.");
}
if (!_invested && _bb.Current.Value > 0.05m)
{
MarketOrder(_vix, 1);
_invested = true;
}
}
///
/// Incrementally updating data
///
private class IncrementallyGeneratedCustomData : UnlinkedDataTradeBar
{
private const decimal _start = 10.01m;
private static decimal _step;
///
/// Gets the source of the subscription. In this case, we set it to existing
/// equity data so that we can pass fake data from Reader
///
/// Subscription configuration
/// Date we're making this request
/// Is live mode
/// Source of subscription
public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode)
{
return new SubscriptionDataSource(Path.Combine(Globals.DataFolder, "equity", "usa", "minute", "spy", $"{date:yyyyMMdd}_trade.zip#{date:yyyyMMdd}_spy_minute_trade.csv"), SubscriptionTransportMedium.LocalFile, FileFormat.Csv);
}
///
/// Reads the data, which in this case is fake incremental data
///
/// Subscription configuration
/// Line of data
/// Date of the request
/// Is live mode
/// Incremental BaseData instance
public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode)
{
var unlinkedBar = new UnlinkedDataTradeBar();
_step += 0.10m;
var open = _start + _step;
var close = _start + _step + 0.02m;
var high = close;
var low = open;
return new IncrementallyGeneratedCustomData
{
Open = open,
High = high,
Low = low,
Close = close,
Time = date,
Symbol = new Symbol(
SecurityIdentifier.GenerateBase(typeof(IncrementallyGeneratedCustomData), "VIX", Market.USA, false),
"VIX"),
Period = unlinkedBar.Period,
DataType = unlinkedBar.DataType
};
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
///
/// Unable to be tested in Python, due to pythonnet not supporting overriding of methods from Python
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 4171;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "28.248%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100330"},
{"Net Profit", "0.330%"},
{"Sharpe Ratio", "315.406"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.22"},
{"Beta", "0.002"},
{"Annual Standard Deviation", "0.001"},
{"Annual Variance", "0"},
{"Information Ratio", "-7.886"},
{"Tracking Error", "0.222"},
{"Treynor Ratio", "144.512"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", "VIX.IncrementallyGeneratedCustomData 2S"},
{"Portfolio Turnover", "0.02%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "a3abee8c47244710f63c596af48a7951"}
};
}
}