/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Configuration;
using QuantConnect.Data;
using QuantConnect.Data.Auxiliary;
using QuantConnect.Interfaces;
using QuantConnect.Util;
namespace QuantConnect.Algorithm.CSharp
{
///
/// In this algorithm we demonstrate how to use the raw data for our securities
/// and verify that the behavior is correct.
///
///
///
public class RawDataRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const string Ticker = "GOOGL";
private CorporateFactorProvider _factorFile;
private readonly IEnumerator _expectedRawPrices = new List { 1158.72m,
1131.97m, 1114.28m, 1120.15m, 1114.51m, 1134.89m, 1135.1m, 571.50m, 545.25m, 540.63m }.GetEnumerator();
private Symbol _googl;
public override void Initialize()
{
SetStartDate(2014, 3, 25); //Set Start Date
SetEndDate(2014, 4, 7); //Set End Date
SetCash(100000); //Set Strategy Cash
// Set our DataNormalizationMode to raw
UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw;
_googl = AddEquity(Ticker, Resolution.Daily).Symbol;
// Get our factor file for this regression
var dataProvider =
Composer.Instance.GetExportedValueByTypeName(Config.Get("data-provider",
"DefaultDataProvider"));
var mapFileProvider = new LocalDiskMapFileProvider();
mapFileProvider.Initialize(dataProvider);
var factorFileProvider = new LocalDiskFactorFileProvider();
factorFileProvider.Initialize(mapFileProvider, dataProvider);
_factorFile = factorFileProvider.Get(_googl) as CorporateFactorProvider;
// Prime our expected values
_expectedRawPrices.MoveNext();
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings(_googl, 1);
}
if (slice.Bars.ContainsKey(_googl))
{
var googlData = slice.Bars[_googl];
// Assert our volume matches what we expected
if (_expectedRawPrices.Current != googlData.Close)
{
// Our values don't match lets try and give a reason why
var dayFactor = _factorFile.GetPriceFactor(googlData.Time, DataNormalizationMode.Adjusted);
var probableRawPrice = googlData.Close / dayFactor; // Undo adjustment
if (_expectedRawPrices.Current == probableRawPrice)
{
throw new RegressionTestException($"Close price was incorrect; it appears to be the adjusted value");
}
else
{
throw new RegressionTestException($"Close price was incorrect; Data may have changed.");
}
}
// Move to our next expected value
_expectedRawPrices.MoveNext();
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 91;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "-85.376%"},
{"Drawdown", "6.900%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "93054.5"},
{"Net Profit", "-6.946%"},
{"Sharpe Ratio", "-2.925"},
{"Sortino Ratio", "-2.881"},
{"Probabilistic Sharpe Ratio", "3.662%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.379"},
{"Beta", "1.959"},
{"Annual Standard Deviation", "0.257"},
{"Annual Variance", "0.066"},
{"Information Ratio", "-2.874"},
{"Tracking Error", "0.195"},
{"Treynor Ratio", "-0.384"},
{"Total Fees", "$1.00"},
{"Estimated Strategy Capacity", "$140000000.00"},
{"Lowest Capacity Asset", "GOOG T1AZ164W5VTX"},
{"Portfolio Turnover", "7.33%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "2284e1b9e7d44577d77987dfe56d3e8d"}
};
}
}