/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Configuration; using QuantConnect.Data; using QuantConnect.Data.Auxiliary; using QuantConnect.Interfaces; using QuantConnect.Util; namespace QuantConnect.Algorithm.CSharp { /// /// In this algorithm we demonstrate how to use the raw data for our securities /// and verify that the behavior is correct. /// /// /// public class RawDataRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private const string Ticker = "GOOGL"; private CorporateFactorProvider _factorFile; private readonly IEnumerator _expectedRawPrices = new List { 1158.72m, 1131.97m, 1114.28m, 1120.15m, 1114.51m, 1134.89m, 1135.1m, 571.50m, 545.25m, 540.63m }.GetEnumerator(); private Symbol _googl; public override void Initialize() { SetStartDate(2014, 3, 25); //Set Start Date SetEndDate(2014, 4, 7); //Set End Date SetCash(100000); //Set Strategy Cash // Set our DataNormalizationMode to raw UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw; _googl = AddEquity(Ticker, Resolution.Daily).Symbol; // Get our factor file for this regression var dataProvider = Composer.Instance.GetExportedValueByTypeName(Config.Get("data-provider", "DefaultDataProvider")); var mapFileProvider = new LocalDiskMapFileProvider(); mapFileProvider.Initialize(dataProvider); var factorFileProvider = new LocalDiskFactorFileProvider(); factorFileProvider.Initialize(mapFileProvider, dataProvider); _factorFile = factorFileProvider.Get(_googl) as CorporateFactorProvider; // Prime our expected values _expectedRawPrices.MoveNext(); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings(_googl, 1); } if (slice.Bars.ContainsKey(_googl)) { var googlData = slice.Bars[_googl]; // Assert our volume matches what we expected if (_expectedRawPrices.Current != googlData.Close) { // Our values don't match lets try and give a reason why var dayFactor = _factorFile.GetPriceFactor(googlData.Time, DataNormalizationMode.Adjusted); var probableRawPrice = googlData.Close / dayFactor; // Undo adjustment if (_expectedRawPrices.Current == probableRawPrice) { throw new RegressionTestException($"Close price was incorrect; it appears to be the adjusted value"); } else { throw new RegressionTestException($"Close price was incorrect; Data may have changed."); } } // Move to our next expected value _expectedRawPrices.MoveNext(); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 91; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "-85.376%"}, {"Drawdown", "6.900%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "93054.5"}, {"Net Profit", "-6.946%"}, {"Sharpe Ratio", "-2.925"}, {"Sortino Ratio", "-2.881"}, {"Probabilistic Sharpe Ratio", "3.662%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.379"}, {"Beta", "1.959"}, {"Annual Standard Deviation", "0.257"}, {"Annual Variance", "0.066"}, {"Information Ratio", "-2.874"}, {"Tracking Error", "0.195"}, {"Treynor Ratio", "-0.384"}, {"Total Fees", "$1.00"}, {"Estimated Strategy Capacity", "$140000000.00"}, {"Lowest Capacity Asset", "GOOG T1AZ164W5VTX"}, {"Portfolio Turnover", "7.33%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "2284e1b9e7d44577d77987dfe56d3e8d"} }; } }