/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Orders; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm testing portfolio construction model control over rebalancing, /// when setting 'PortfolioConstructionModel.RebalanceOnSecurityChanges' to false, see GH 4075. /// public class PortfolioRebalanceOnSecurityChangesRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private int _generatedInsightsCount; private Dictionary _lastOrderFilled; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2015, 1, 1); SetEndDate(2017, 1, 1); Settings.RebalancePortfolioOnSecurityChanges = false; Settings.RebalancePortfolioOnInsightChanges = false; SetUniverseSelection(new CustomUniverseSelectionModel("CustomUniverseSelectionModel", time => { if (new[] { DayOfWeek.Friday, DayOfWeek.Thursday }.Contains(time.DayOfWeek)) { return new List { "FB", "SPY" }; } return new List { "AAPL", "IBM" }; } )); SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, null)); SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel( time => time.AddDays(30))); SetExecution(new ImmediateExecutionModel()); _lastOrderFilled = new Dictionary(); InsightsGenerated += (_, e) => _generatedInsightsCount += e.Insights.Length; } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Submitted) { DateTime lastOrderFilled; if (_lastOrderFilled.TryGetValue(orderEvent.Symbol, out lastOrderFilled)) { if (UtcTime - lastOrderFilled < TimeSpan.FromDays(30)) { throw new RegressionTestException($"{UtcTime} {orderEvent.Symbol} {UtcTime - lastOrderFilled}"); } } _lastOrderFilled[orderEvent.Symbol] = UtcTime; Debug($"{orderEvent}"); } } public override void OnEndOfAlgorithm() { if (Insights.Count == _generatedInsightsCount) { // The number of insights is modified by the Portfolio Construction Model, // since it removes expired insights and insights from removed securities throw new RegressionTestException($"The number of insights in the insight manager should be different of the number of all insights generated ({_generatedInsightsCount})"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 5485; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "64"}, {"Average Win", "2.71%"}, {"Average Loss", "-2.34%"}, {"Compounding Annual Return", "2.256%"}, {"Drawdown", "25.500%"}, {"Expectancy", "0.079"}, {"Start Equity", "100000"}, {"End Equity", "104560.59"}, {"Net Profit", "4.561%"}, {"Sharpe Ratio", "0.117"}, {"Sortino Ratio", "0.106"}, {"Probabilistic Sharpe Ratio", "8.398%"}, {"Loss Rate", "50%"}, {"Win Rate", "50%"}, {"Profit-Loss Ratio", "1.16"}, {"Alpha", "-0.01"}, {"Beta", "0.569"}, {"Annual Standard Deviation", "0.125"}, {"Annual Variance", "0.016"}, {"Information Ratio", "-0.243"}, {"Tracking Error", "0.117"}, {"Treynor Ratio", "0.026"}, {"Total Fees", "$271.25"}, {"Estimated Strategy Capacity", "$44000000.00"}, {"Lowest Capacity Asset", "IBM R735QTJ8XC9X"}, {"Portfolio Turnover", "4.37%"}, {"Drawdown Recovery", "57"}, {"OrderListHash", "d6286db83c9d034251491fae4c937d76"} }; } }