/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm testing portfolio construction model control over rebalancing,
/// when setting 'PortfolioConstructionModel.RebalanceOnSecurityChanges' to false, see GH 4075.
///
public class PortfolioRebalanceOnSecurityChangesRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private int _generatedInsightsCount;
private Dictionary _lastOrderFilled;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2015, 1, 1);
SetEndDate(2017, 1, 1);
Settings.RebalancePortfolioOnSecurityChanges = false;
Settings.RebalancePortfolioOnInsightChanges = false;
SetUniverseSelection(new CustomUniverseSelectionModel("CustomUniverseSelectionModel",
time =>
{
if (new[] { DayOfWeek.Friday, DayOfWeek.Thursday }.Contains(time.DayOfWeek))
{
return new List { "FB", "SPY" };
}
return new List { "AAPL", "IBM" };
}
));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, null));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel(
time => time.AddDays(30)));
SetExecution(new ImmediateExecutionModel());
_lastOrderFilled = new Dictionary();
InsightsGenerated += (_, e) => _generatedInsightsCount += e.Insights.Length;
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status == OrderStatus.Submitted)
{
DateTime lastOrderFilled;
if (_lastOrderFilled.TryGetValue(orderEvent.Symbol, out lastOrderFilled))
{
if (UtcTime - lastOrderFilled < TimeSpan.FromDays(30))
{
throw new RegressionTestException($"{UtcTime} {orderEvent.Symbol} {UtcTime - lastOrderFilled}");
}
}
_lastOrderFilled[orderEvent.Symbol] = UtcTime;
Debug($"{orderEvent}");
}
}
public override void OnEndOfAlgorithm()
{
if (Insights.Count == _generatedInsightsCount)
{
// The number of insights is modified by the Portfolio Construction Model,
// since it removes expired insights and insights from removed securities
throw new RegressionTestException($"The number of insights in the insight manager should be different of the number of all insights generated ({_generatedInsightsCount})");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 5485;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "64"},
{"Average Win", "2.71%"},
{"Average Loss", "-2.34%"},
{"Compounding Annual Return", "2.256%"},
{"Drawdown", "25.500%"},
{"Expectancy", "0.079"},
{"Start Equity", "100000"},
{"End Equity", "104560.59"},
{"Net Profit", "4.561%"},
{"Sharpe Ratio", "0.117"},
{"Sortino Ratio", "0.106"},
{"Probabilistic Sharpe Ratio", "8.398%"},
{"Loss Rate", "50%"},
{"Win Rate", "50%"},
{"Profit-Loss Ratio", "1.16"},
{"Alpha", "-0.01"},
{"Beta", "0.569"},
{"Annual Standard Deviation", "0.125"},
{"Annual Variance", "0.016"},
{"Information Ratio", "-0.243"},
{"Tracking Error", "0.117"},
{"Treynor Ratio", "0.026"},
{"Total Fees", "$271.25"},
{"Estimated Strategy Capacity", "$44000000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "4.37%"},
{"Drawdown Recovery", "57"},
{"OrderListHash", "d6286db83c9d034251491fae4c937d76"}
};
}
}