/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Statistics;
using System.Collections.Generic;
using System.Linq;
using System;
using QuantConnect.Indicators;
using static QuantConnect.StringExtensions;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem.
///
///
///
public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm
{
private const double _targetReturn = 0.1;
private const double _riskFreeRate = 0.01;
private double _lagrangeMultiplier;
private double _portfolioRisk;
private Matrix Sigma;
private List SymbolDataList;
public Vector DiscountMeanVector
{
get
{
if (SymbolDataList == null)
{
return null;
}
return
Vector.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()) -
Vector.Build.Dense(SymbolDataList.Count, _riskFreeRate);
}
}
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// Find more symbols here: http://quantconnect.com/data
AddEquity("SPY", Resolution.Daily);
AddEquity("AIG", Resolution.Daily);
AddEquity("BAC", Resolution.Daily);
AddEquity("IBM", Resolution.Daily);
var allHistoryBars = new List();
SymbolDataList = new List();
foreach (var security in Securities)
{
var history = History(security.Key, TimeSpan.FromDays(365));
allHistoryBars.Add(history.Select(x => (double)x.Value).ToArray());
SymbolDataList.Add(new SymbolData(security.Key, history));
}
// Diagonal Matrix with each security risk (standard deviation)
var S = Matrix.Build.DenseOfDiagonalArray(SymbolDataList.Select(x => (double)x.Risk).ToArray());
// Computes Correlation Matrix (using Math.NET Numerics Statistics)
var R = MathNet.Numerics.Statistics.Correlation.PearsonMatrix(allHistoryBars);
// Computes Covariance Matrix (using Math.NET Numerics Linear Algebra)
Sigma = S * R * S;
ComputeLagrangeMultiplier();
ComputeWeights();
ComputePortfolioRisk();
Log($"Lagrange Multiplier: {_lagrangeMultiplier.ToStringInvariant("7:F4")}");
Log($"Portfolio Risk: {_portfolioRisk.ToStringInvariant("7:P2")} ");
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
foreach (var symbolData in SymbolDataList.OrderBy(x => x.Weight))
{
SetHoldings(symbolData.Symbol, symbolData.Weight);
Debug("Purchased Stock: " + symbolData);
}
}
}
///
/// Computes Lagrange Multiplier
///
private void ComputeLagrangeMultiplier()
{
var denominatorMatrix = DiscountMeanVector * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix();
_lagrangeMultiplier = (_targetReturn - _riskFreeRate) / denominatorMatrix.ToArray().First();
}
///
/// Computes weight for each risky asset
///
private void ComputeWeights()
{
var weights = _lagrangeMultiplier * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix();
for (var i = 0; i < weights.RowCount; i++)
{
SymbolDataList[i].SetWeight(weights.ToArray()[i, 0]);
}
}
///
/// Computes Portfolio Risk
///
private void ComputePortfolioRisk()
{
var weights = Vector.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray());
var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix();
_portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First());
}
///
/// Symbol Data class to store security data (Return, Risk, Weight)
///
class SymbolData
{
private RateOfChange ROC = new RateOfChange(2);
private SimpleMovingAverage SMA;
private StandardDeviation STD;
public Symbol Symbol { get; private set; }
public decimal Return { get { return SMA.Current; } }
public decimal Risk { get { return STD.Current; } }
public decimal Weight { get; private set; }
public SymbolData(Symbol symbol, IEnumerable history)
{
Symbol = symbol;
SMA = new SimpleMovingAverage(365).Of(ROC);
STD = new StandardDeviation(365).Of(ROC);
foreach (var data in history)
{
Update(data);
}
}
public void Update(BaseData data)
{
ROC.Update(data.Time, data.Value);
}
public void SetWeight(double value)
{
Weight = (decimal)value;
}
public override string ToString()
{
return Invariant($"{Symbol.Value}: {Weight,10:P2}\t{Return,10:P2}\t{Risk,10:P2}");
}
}
}
}