/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using MathNet.Numerics.LinearAlgebra; using MathNet.Numerics.Statistics; using System.Collections.Generic; using System.Linq; using System; using QuantConnect.Indicators; using static QuantConnect.StringExtensions; namespace QuantConnect.Algorithm.CSharp { /// /// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem. /// /// /// public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm { private const double _targetReturn = 0.1; private const double _riskFreeRate = 0.01; private double _lagrangeMultiplier; private double _portfolioRisk; private Matrix Sigma; private List SymbolDataList; public Vector DiscountMeanVector { get { if (SymbolDataList == null) { return null; } return Vector.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()) - Vector.Build.Dense(SymbolDataList.Count, _riskFreeRate); } } /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 10, 07); //Set Start Date SetEndDate(2013, 10, 11); //Set End Date SetCash(100000); //Set Strategy Cash // Find more symbols here: http://quantconnect.com/data AddEquity("SPY", Resolution.Daily); AddEquity("AIG", Resolution.Daily); AddEquity("BAC", Resolution.Daily); AddEquity("IBM", Resolution.Daily); var allHistoryBars = new List(); SymbolDataList = new List(); foreach (var security in Securities) { var history = History(security.Key, TimeSpan.FromDays(365)); allHistoryBars.Add(history.Select(x => (double)x.Value).ToArray()); SymbolDataList.Add(new SymbolData(security.Key, history)); } // Diagonal Matrix with each security risk (standard deviation) var S = Matrix.Build.DenseOfDiagonalArray(SymbolDataList.Select(x => (double)x.Risk).ToArray()); // Computes Correlation Matrix (using Math.NET Numerics Statistics) var R = MathNet.Numerics.Statistics.Correlation.PearsonMatrix(allHistoryBars); // Computes Covariance Matrix (using Math.NET Numerics Linear Algebra) Sigma = S * R * S; ComputeLagrangeMultiplier(); ComputeWeights(); ComputePortfolioRisk(); Log($"Lagrange Multiplier: {_lagrangeMultiplier.ToStringInvariant("7:F4")}"); Log($"Portfolio Risk: {_portfolioRisk.ToStringInvariant("7:P2")} "); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { foreach (var symbolData in SymbolDataList.OrderBy(x => x.Weight)) { SetHoldings(symbolData.Symbol, symbolData.Weight); Debug("Purchased Stock: " + symbolData); } } } /// /// Computes Lagrange Multiplier /// private void ComputeLagrangeMultiplier() { var denominatorMatrix = DiscountMeanVector * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); _lagrangeMultiplier = (_targetReturn - _riskFreeRate) / denominatorMatrix.ToArray().First(); } /// /// Computes weight for each risky asset /// private void ComputeWeights() { var weights = _lagrangeMultiplier * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); for (var i = 0; i < weights.RowCount; i++) { SymbolDataList[i].SetWeight(weights.ToArray()[i, 0]); } } /// /// Computes Portfolio Risk /// private void ComputePortfolioRisk() { var weights = Vector.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()); var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix(); _portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First()); } /// /// Symbol Data class to store security data (Return, Risk, Weight) /// class SymbolData { private RateOfChange ROC = new RateOfChange(2); private SimpleMovingAverage SMA; private StandardDeviation STD; public Symbol Symbol { get; private set; } public decimal Return { get { return SMA.Current; } } public decimal Risk { get { return STD.Current; } } public decimal Weight { get; private set; } public SymbolData(Symbol symbol, IEnumerable history) { Symbol = symbol; SMA = new SimpleMovingAverage(365).Of(ROC); STD = new StandardDeviation(365).Of(ROC); foreach (var data in history) { Update(data); } } public void Update(BaseData data) { ROC.Update(data.Time, data.Value); } public void SetWeight(double value) { Weight = (decimal)value; } public override string ToString() { return Invariant($"{Symbol.Value}: {Weight,10:P2}\t{Return,10:P2}\t{Risk,10:P2}"); } } } }