/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Adds a universe with a custom data type and retrieves historical data
/// while preserving the custom data type.
///
public class PersistentCustomDataUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _universeSymbol;
private bool _dataReceived;
public override void Initialize()
{
SetStartDate(2018, 6, 1);
SetEndDate(2018, 6, 19);
var universe = AddUniverse("my-stock-data-source", Resolution.Daily, UniverseSelector);
_universeSymbol = universe.Symbol;
RetrieveHistoricalData();
}
private IEnumerable UniverseSelector(IEnumerable data)
{
foreach (var item in data.OfType())
{
yield return item.Symbol;
}
}
private void RetrieveHistoricalData()
{
var history = History(_universeSymbol, new DateTime(2018, 1, 1), new DateTime(2018, 6, 1), Resolution.Daily).ToList();
if (history.Count == 0)
{
throw new RegressionTestException($"No historical data received for the symbol {_universeSymbol}.");
}
// Ensure all values are of type StockDataSource
foreach (var item in history)
{
if (item is not StockDataSource)
{
throw new RegressionTestException($"Unexpected data type in history. Expected StockDataSource but received {item.GetType().Name}.");
}
}
}
public override void OnData(Slice slice)
{
if (!slice.ContainsKey(_universeSymbol))
{
throw new RegressionTestException($"No data received for the universe symbol: {_universeSymbol}.");
}
if (!_dataReceived)
{
RetrieveHistoricalData();
}
_dataReceived = true;
}
public override void OnEndOfAlgorithm()
{
if (!_dataReceived)
{
throw new RegressionTestException("No data was received after the universe selection.");
}
}
///
/// Our custom data type that defines where to get and how to read our backtest and live data.
///
public class StockDataSource : BaseData
{
public List Symbols { get; set; }
public StockDataSource()
{
Symbols = new List();
}
public override DateTime EndTime
{
get { return Time + Period; }
set { Time = value - Period; }
}
public TimeSpan Period
{
get { return QuantConnect.Time.OneDay; }
}
public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode)
{
var source = Path.Combine("..", "..", "..", "Tests", "TestData", "daily-stock-picker-backtest.csv");
return new SubscriptionDataSource(source);
}
public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode)
{
if (string.IsNullOrWhiteSpace(line) || !char.IsDigit(line[0]))
{
return null;
}
var stocks = new StockDataSource { Symbol = config.Symbol };
try
{
var csv = line.ToCsv();
stocks.Time = DateTime.ParseExact(csv[0], "yyyyMMdd", null);
stocks.Symbols.AddRange(csv[1..]);
}
catch (FormatException)
{
return null;
}
return stocks;
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 8767;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 298;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-3.9"},
{"Tracking Error", "0.045"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}