/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.IO; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Adds a universe with a custom data type and retrieves historical data /// while preserving the custom data type. /// public class PersistentCustomDataUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _universeSymbol; private bool _dataReceived; public override void Initialize() { SetStartDate(2018, 6, 1); SetEndDate(2018, 6, 19); var universe = AddUniverse("my-stock-data-source", Resolution.Daily, UniverseSelector); _universeSymbol = universe.Symbol; RetrieveHistoricalData(); } private IEnumerable UniverseSelector(IEnumerable data) { foreach (var item in data.OfType()) { yield return item.Symbol; } } private void RetrieveHistoricalData() { var history = History(_universeSymbol, new DateTime(2018, 1, 1), new DateTime(2018, 6, 1), Resolution.Daily).ToList(); if (history.Count == 0) { throw new RegressionTestException($"No historical data received for the symbol {_universeSymbol}."); } // Ensure all values are of type StockDataSource foreach (var item in history) { if (item is not StockDataSource) { throw new RegressionTestException($"Unexpected data type in history. Expected StockDataSource but received {item.GetType().Name}."); } } } public override void OnData(Slice slice) { if (!slice.ContainsKey(_universeSymbol)) { throw new RegressionTestException($"No data received for the universe symbol: {_universeSymbol}."); } if (!_dataReceived) { RetrieveHistoricalData(); } _dataReceived = true; } public override void OnEndOfAlgorithm() { if (!_dataReceived) { throw new RegressionTestException("No data was received after the universe selection."); } } /// /// Our custom data type that defines where to get and how to read our backtest and live data. /// public class StockDataSource : BaseData { public List Symbols { get; set; } public StockDataSource() { Symbols = new List(); } public override DateTime EndTime { get { return Time + Period; } set { Time = value - Period; } } public TimeSpan Period { get { return QuantConnect.Time.OneDay; } } public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode) { var source = Path.Combine("..", "..", "..", "Tests", "TestData", "daily-stock-picker-backtest.csv"); return new SubscriptionDataSource(source); } public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode) { if (string.IsNullOrWhiteSpace(line) || !char.IsDigit(line[0])) { return null; } var stocks = new StockDataSource { Symbol = config.Symbol }; try { var csv = line.ToCsv(); stocks.Time = DateTime.ParseExact(csv[0], "yyyyMMdd", null); stocks.Symbols.AddRange(csv[1..]); } catch (FormatException) { return null; } return stocks; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 8767; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 298; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "-3.9"}, {"Tracking Error", "0.045"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }