/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm demonstrating the option universe filter by greeks and other options data feature /// public class OptionUniverseFilterGreeksRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private const string UnderlyingTicker = "GOOG"; private Symbol _optionSymbol; private bool _optionChainReceived; protected decimal MinDelta { get; set; } protected decimal MaxDelta { get; set; } protected decimal MinGamma { get; set; } protected decimal MaxGamma { get; set; } protected decimal MinVega { get; set; } protected decimal MaxVega { get; set; } protected decimal MinTheta { get; set; } protected decimal MaxTheta { get; set; } protected decimal MinRho { get; set; } protected decimal MaxRho { get; set; } protected decimal MinIv { get; set; } protected decimal MaxIv { get; set; } protected long MinOpenInterest { get; set; } protected long MaxOpenInterest { get; set; } public override void Initialize() { SetStartDate(2015, 12, 24); SetEndDate(2015, 12, 24); SetCash(100000); AddEquity(UnderlyingTicker); var option = AddOption(UnderlyingTicker); _optionSymbol = option.Symbol; MinDelta = 0.5m; MaxDelta = 1.5m; MinGamma = 0.0001m; MaxGamma = 0.0006m; MinVega = 0.01m; MaxVega = 1.5m; MinTheta = -2.0m; MaxTheta = -0.5m; MinRho = 0.5m; MaxRho = 3.0m; MinIv = 1.0m; MaxIv = 3.0m; MinOpenInterest = 100; MaxOpenInterest = 500; option.SetFilter(u => { var totalContracts = u.Count(); var filteredUniverse = OptionFilter(u); var filteredContracts = filteredUniverse.Count(); if (filteredContracts == totalContracts) { throw new RegressionTestException($"Expected filtered universe to have less contracts than original universe." + $"Filtered contracts count ({filteredContracts}) is equal to total contracts count ({totalContracts})"); } return filteredUniverse; }); } protected virtual OptionFilterUniverse OptionFilter(OptionFilterUniverse universe) { // Contracts can be filtered by greeks, implied volatility, open interest: return universe .Delta(MinDelta, MaxDelta) .Gamma(MinGamma, MaxGamma) .Vega(MinVega, MaxVega) .Theta(MinTheta, MaxTheta) .Rho(MinRho, MaxRho) .ImpliedVolatility(MinIv, MaxIv) .OpenInterest(MinOpenInterest, MaxOpenInterest); // Note: there are also shortcuts for these filter methods: /* return u => universe .D(MinDelta, MaxDelta) .G(MinGamma, MaxGamma) .V(MinVega, MaxVega) .T(MinTheta, MaxTheta) .R(MinRho, MaxRho) .IV(MinIv, MaxIv) .OI(MinOpenInterest, MaxOpenInterest); */ } public override void OnData(Slice slice) { if (slice.OptionChains.TryGetValue(_optionSymbol, out var chain) && chain.Contracts.Count > 0) { Log($"[{Time}] :: Received option chain with {chain.Contracts.Count} contracts"); _optionChainReceived = true; } } public override void OnEndOfAlgorithm() { if (!_optionChainReceived) { throw new RegressionTestException("Option chain was not received."); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 7113; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }