/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm demonstrating the option universe filter by greeks and other options data feature
///
public class OptionUniverseFilterGreeksRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const string UnderlyingTicker = "GOOG";
private Symbol _optionSymbol;
private bool _optionChainReceived;
protected decimal MinDelta { get; set; }
protected decimal MaxDelta { get; set; }
protected decimal MinGamma { get; set; }
protected decimal MaxGamma { get; set; }
protected decimal MinVega { get; set; }
protected decimal MaxVega { get; set; }
protected decimal MinTheta { get; set; }
protected decimal MaxTheta { get; set; }
protected decimal MinRho { get; set; }
protected decimal MaxRho { get; set; }
protected decimal MinIv { get; set; }
protected decimal MaxIv { get; set; }
protected long MinOpenInterest { get; set; }
protected long MaxOpenInterest { get; set; }
public override void Initialize()
{
SetStartDate(2015, 12, 24);
SetEndDate(2015, 12, 24);
SetCash(100000);
AddEquity(UnderlyingTicker);
var option = AddOption(UnderlyingTicker);
_optionSymbol = option.Symbol;
MinDelta = 0.5m;
MaxDelta = 1.5m;
MinGamma = 0.0001m;
MaxGamma = 0.0006m;
MinVega = 0.01m;
MaxVega = 1.5m;
MinTheta = -2.0m;
MaxTheta = -0.5m;
MinRho = 0.5m;
MaxRho = 3.0m;
MinIv = 1.0m;
MaxIv = 3.0m;
MinOpenInterest = 100;
MaxOpenInterest = 500;
option.SetFilter(u =>
{
var totalContracts = u.Count();
var filteredUniverse = OptionFilter(u);
var filteredContracts = filteredUniverse.Count();
if (filteredContracts == totalContracts)
{
throw new RegressionTestException($"Expected filtered universe to have less contracts than original universe." +
$"Filtered contracts count ({filteredContracts}) is equal to total contracts count ({totalContracts})");
}
return filteredUniverse;
});
}
protected virtual OptionFilterUniverse OptionFilter(OptionFilterUniverse universe)
{
// Contracts can be filtered by greeks, implied volatility, open interest:
return universe
.Delta(MinDelta, MaxDelta)
.Gamma(MinGamma, MaxGamma)
.Vega(MinVega, MaxVega)
.Theta(MinTheta, MaxTheta)
.Rho(MinRho, MaxRho)
.ImpliedVolatility(MinIv, MaxIv)
.OpenInterest(MinOpenInterest, MaxOpenInterest);
// Note: there are also shortcuts for these filter methods:
/*
return u => universe
.D(MinDelta, MaxDelta)
.G(MinGamma, MaxGamma)
.V(MinVega, MaxVega)
.T(MinTheta, MaxTheta)
.R(MinRho, MaxRho)
.IV(MinIv, MaxIv)
.OI(MinOpenInterest, MaxOpenInterest);
*/
}
public override void OnData(Slice slice)
{
if (slice.OptionChains.TryGetValue(_optionSymbol, out var chain) && chain.Contracts.Count > 0)
{
Log($"[{Time}] :: Received option chain with {chain.Contracts.Count} contracts");
_optionChainReceived = true;
}
}
public override void OnEndOfAlgorithm()
{
if (!_optionChainReceived)
{
throw new RegressionTestException("Option chain was not received.");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public virtual List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 7113;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}