/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; using System.Collections.Generic; namespace QuantConnect.Algorithm.CSharp { /// /// Regression test asserting behavior of /// public class OptionSymbolCanonicalRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _optionContract; private Symbol _canonicalOptionContract; public override void Initialize() { SetStartDate(2014, 06, 05); SetEndDate(2014, 06, 09); var equitySymbol = AddEquity("TWX").Symbol; var contracts = OptionChain(equitySymbol).ToList(); var callOptionSymbol = contracts .Where(c => c.ID.OptionRight == OptionRight.Call) .OrderBy(c => c.ID.Date) .First(); _optionContract = AddOptionContract(callOptionSymbol).Symbol; _canonicalOptionContract = _optionContract.Canonical; } public override void OnData(Slice slice) { if (!ReferenceEquals(_canonicalOptionContract, _optionContract.Canonical)) { throw new RegressionTestException("Canonical Symbol reference changed!"); } _canonicalOptionContract = _optionContract.Canonical; if (slice.OptionChains.ContainsKey(_optionContract.Canonical)) { var chain = slice.OptionChains[_optionContract.Canonical]; if (!Portfolio.Invested) { MarketOrder(_optionContract, 1); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 4713; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 1; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "-11.148%"}, {"Drawdown", "0.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "99849"}, {"Net Profit", "-0.151%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "-11.639"}, {"Tracking Error", "0.037"}, {"Treynor Ratio", "0"}, {"Total Fees", "$1.00"}, {"Estimated Strategy Capacity", "$5700000.00"}, {"Lowest Capacity Asset", "AOL VRKS95ENLBYE|AOL R735QTJ8XC9X"}, {"Portfolio Turnover", "0.59%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "cf5752ad13afe5294a9a8aad660d015a"} }; } }