/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Algorithm illustrating the usage of the indicators
///
public class OptionIndicatorsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private ImpliedVolatility _impliedVolatility;
private Delta _delta;
private Gamma _gamma;
private Vega _vega;
private Theta _theta;
private Rho _rho;
protected virtual string ExpectedGreeks { get; set; } = "Implied Volatility: 0.44529,Delta: -0.00921,Gamma: 0.00036,Vega: 0.03636,Theta: -0.03747,Rho: 0.00047";
public override void Initialize()
{
SetStartDate(2014, 6, 5);
SetEndDate(2014, 6, 7);
SetCash(100000);
AddEquity("AAPL", Resolution.Minute);
var option = QuantConnect.Symbol.CreateOption("AAPL", Market.USA, OptionStyle.American, OptionRight.Put, 505m, new DateTime(2014, 6, 27));
AddOptionContract(option, Resolution.Minute);
InitializeIndicators(option);
}
protected void InitializeIndicators(Symbol option)
{
_impliedVolatility = IV(option);
_delta = D(option, optionModel: OptionPricingModelType.BinomialCoxRossRubinstein, ivModel: OptionPricingModelType.BlackScholes);
_gamma = G(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
_vega = V(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
_theta = T(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
_rho = R(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
}
public override void OnEndOfAlgorithm()
{
if (_impliedVolatility == 0m || _delta == 0m || _gamma == 0m || _vega == 0m || _theta == 0m || _rho == 0m)
{
throw new RegressionTestException("Expected IV/greeks calculated");
}
var result = @$"Implied Volatility: {_impliedVolatility},Delta: {_delta},Gamma: {_gamma},Vega: {_vega},Theta: {_theta},Rho: {_rho}";
Debug(result);
if (result != ExpectedGreeks)
{
throw new RegressionTestException($"Unexpected greek values {result}. Expected {ExpectedGreeks}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public virtual List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public virtual long DataPoints => 1974;
///
/// Data Points count of the algorithm history
///
public virtual int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public virtual Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}