/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Indicators; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Algorithm illustrating the usage of the indicators /// public class OptionIndicatorsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private ImpliedVolatility _impliedVolatility; private Delta _delta; private Gamma _gamma; private Vega _vega; private Theta _theta; private Rho _rho; protected virtual string ExpectedGreeks { get; set; } = "Implied Volatility: 0.44529,Delta: -0.00921,Gamma: 0.00036,Vega: 0.03636,Theta: -0.03747,Rho: 0.00047"; public override void Initialize() { SetStartDate(2014, 6, 5); SetEndDate(2014, 6, 7); SetCash(100000); AddEquity("AAPL", Resolution.Minute); var option = QuantConnect.Symbol.CreateOption("AAPL", Market.USA, OptionStyle.American, OptionRight.Put, 505m, new DateTime(2014, 6, 27)); AddOptionContract(option, Resolution.Minute); InitializeIndicators(option); } protected void InitializeIndicators(Symbol option) { _impliedVolatility = IV(option); _delta = D(option, optionModel: OptionPricingModelType.BinomialCoxRossRubinstein, ivModel: OptionPricingModelType.BlackScholes); _gamma = G(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); _vega = V(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); _theta = T(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); _rho = R(option, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); } public override void OnEndOfAlgorithm() { if (_impliedVolatility == 0m || _delta == 0m || _gamma == 0m || _vega == 0m || _theta == 0m || _rho == 0m) { throw new RegressionTestException("Expected IV/greeks calculated"); } var result = @$"Implied Volatility: {_impliedVolatility},Delta: {_delta},Gamma: {_gamma},Vega: {_vega},Theta: {_theta},Rho: {_rho}"; Debug(result); if (result != ExpectedGreeks) { throw new RegressionTestException($"Unexpected greek values {result}. Expected {ExpectedGreeks}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 1974; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }