/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.Market; using System.Collections.Generic; using QuantConnect.Securities.Option.StrategyMatcher; using QuantConnect.Securities.Option; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm exercising an equity Reverse Conversion option strategy and asserting it's being detected by Lean and works as expected /// public class OptionEquityReverseConversionRegressionAlgorithm : OptionEquityBaseStrategyRegressionAlgorithm { /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { OptionChain chain; if (IsMarketOpen(_optionSymbol) && slice.OptionChains.TryGetValue(_optionSymbol, out chain)) { var contracts = chain .OrderByDescending(x => x.Expiry) .ThenBy(x => x.Strike) .ToList(); var call = contracts.Last(contract => contract.Right == OptionRight.Call); var put = contracts.Single(contract => contract.Right == OptionRight.Put && contract.Expiry == call.Expiry && contract.Strike == call.Strike); var underlying = call.Symbol.Underlying; var initialMargin = Portfolio.MarginRemaining; MarketOrder(underlying, -100); MarketOrder(call.Symbol, 1); MarketOrder(put.Symbol, -1); var freeMarginPostTrade = Portfolio.MarginRemaining; AssertOptionStrategyIsPresent(OptionStrategyDefinitions.ReverseConversion.Name, 1); var putInTheMoneyAmount = ((Option)Securities[put.Symbol]).GetIntrinsicValue(Securities[underlying].Price); var expectedMarginUsage = (putInTheMoneyAmount + 0.1m * call.Strike) * 100; if (expectedMarginUsage != Portfolio.TotalMarginUsed) { throw new RegressionTestException("Unexpect margin used!"); } // we payed the ask and value using the assets price var priceSpreadDifference = GetPriceSpreadDifference(call.Symbol, put.Symbol, underlying); if (initialMargin != (freeMarginPostTrade + expectedMarginUsage + _paidFees - priceSpreadDifference)) { throw new RegressionTestException("Unexpect margin remaining!"); } } } } /// /// Data Points count of all timeslices of algorithm /// public override long DataPoints => 15023; /// /// Data Points count of the algorithm history /// public override int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public override Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "3"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "200000"}, {"End Equity", "199801"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$3.00"}, {"Estimated Strategy Capacity", "$7400000.00"}, {"Lowest Capacity Asset", "GOOCV W78ZFMML01JA|GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "38.84%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "722e8214812becc745646ff31fcbce1b"} }; } }