/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; using System.Collections.Generic; using QuantConnect.Algorithm.Framework.Selection; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm making sure that the added universe selection does not remove the option chain during it's daily refresh /// public class OptionChainedAndUniverseSelectionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _aaplOption; public override void Initialize() { UniverseSettings.Resolution = Resolution.Minute; SetStartDate(2014, 06, 05); SetEndDate(2014, 06, 09); _aaplOption = AddOption("AAPL").Symbol; AddUniverseSelection(new DailyUniverseSelectionModel("MyCustomSelectionModel", time => new[] { "AAPL" }, this)); } public override void OnData(Slice slice) { if (!Portfolio.Invested) { Buy("AAPL", 1); } } public override void OnEndOfAlgorithm() { var config = SubscriptionManager.Subscriptions.ToList(); if (config.All(dataConfig => dataConfig.Symbol != "AAPL")) { throw new RegressionTestException("Was expecting configurations for AAPL"); } if (config.All(dataConfig => dataConfig.Symbol.SecurityType != SecurityType.Option)) { throw new RegressionTestException($"Was expecting configurations for {_aaplOption}"); } } private class DailyUniverseSelectionModel : CustomUniverseSelectionModel { private DateTime _lastRefresh; private IAlgorithm _algorithm; public DailyUniverseSelectionModel(string name, Func> selector, IAlgorithm algorithm) : base(name, selector) { _algorithm = algorithm; } public override DateTime GetNextRefreshTimeUtc() { if (_lastRefresh != _algorithm.Time.Date) { _lastRefresh = _algorithm.Time.Date; return DateTime.MinValue; } return DateTime.MaxValue; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 19701; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0.524%"}, {"Drawdown", "0.000%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100007.16"}, {"Net Profit", "0.007%"}, {"Sharpe Ratio", "-3.983"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "79.393%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0"}, {"Beta", "-0.007"}, {"Annual Standard Deviation", "0.001"}, {"Annual Variance", "0"}, {"Information Ratio", "-11.436"}, {"Tracking Error", "0.037"}, {"Treynor Ratio", "0.431"}, {"Total Fees", "$1.00"}, {"Estimated Strategy Capacity", "$4200000000.00"}, {"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"}, {"Portfolio Turnover", "0.13%"}, {"Drawdown Recovery", "2"}, {"OrderListHash", "87f55de4577d35a6ff70a7fd335e14a4"} }; } }