/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using System.Collections.Generic;
using QuantConnect.Algorithm.Framework.Selection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm making sure that the added universe selection does not remove the option chain during it's daily refresh
///
public class OptionChainedAndUniverseSelectionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _aaplOption;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Minute;
SetStartDate(2014, 06, 05);
SetEndDate(2014, 06, 09);
_aaplOption = AddOption("AAPL").Symbol;
AddUniverseSelection(new DailyUniverseSelectionModel("MyCustomSelectionModel", time => new[] { "AAPL" }, this));
}
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
Buy("AAPL", 1);
}
}
public override void OnEndOfAlgorithm()
{
var config = SubscriptionManager.Subscriptions.ToList();
if (config.All(dataConfig => dataConfig.Symbol != "AAPL"))
{
throw new RegressionTestException("Was expecting configurations for AAPL");
}
if (config.All(dataConfig => dataConfig.Symbol.SecurityType != SecurityType.Option))
{
throw new RegressionTestException($"Was expecting configurations for {_aaplOption}");
}
}
private class DailyUniverseSelectionModel : CustomUniverseSelectionModel
{
private DateTime _lastRefresh;
private IAlgorithm _algorithm;
public DailyUniverseSelectionModel(string name, Func> selector, IAlgorithm algorithm) : base(name, selector)
{
_algorithm = algorithm;
}
public override DateTime GetNextRefreshTimeUtc()
{
if (_lastRefresh != _algorithm.Time.Date)
{
_lastRefresh = _algorithm.Time.Date;
return DateTime.MinValue;
}
return DateTime.MaxValue;
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 19701;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0.524%"},
{"Drawdown", "0.000%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100007.16"},
{"Net Profit", "0.007%"},
{"Sharpe Ratio", "-3.983"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "79.393%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0"},
{"Beta", "-0.007"},
{"Annual Standard Deviation", "0.001"},
{"Annual Variance", "0"},
{"Information Ratio", "-11.436"},
{"Tracking Error", "0.037"},
{"Treynor Ratio", "0.431"},
{"Total Fees", "$1.00"},
{"Estimated Strategy Capacity", "$4200000000.00"},
{"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"},
{"Portfolio Turnover", "0.13%"},
{"Drawdown Recovery", "2"},
{"OrderListHash", "87f55de4577d35a6ff70a7fd335e14a4"}
};
}
}