/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Test algorithm verifying OnEndOfDay callbacks are called as expected. See GH issue 2865.
///
public class OnEndOfDayRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spySymbol;
private Symbol _bacSymbol;
private Symbol _ibmSymbol;
private int _onEndOfDaySpyCallCount;
private int _onEndOfDayBacCallCount;
private int _onEndOfDayIbmCallCount;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
SetCash(100000);
_spySymbol = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
_bacSymbol = QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA);
_ibmSymbol = QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA);
AddUniverse("my-universe-name", time =>
{
if (time.Day == 8)
{
return new List { _spySymbol.Value, _ibmSymbol.Value };
}
return new List { _spySymbol.Value };
});
}
///
/// We expect it to be called for the universe selected
/// and the post initialize manually added equity
///
public override void OnEndOfDay(Symbol symbol)
{
if (symbol == _spySymbol)
{
if (_onEndOfDaySpyCallCount == 0)
{
// just the first time
SetHoldings(_spySymbol, 0.5);
AddEquity("BAC");
}
_onEndOfDaySpyCallCount++;
}
else if (symbol == _bacSymbol)
{
if (_onEndOfDayBacCallCount == 0)
{
// just the first time
SetHoldings(_bacSymbol, 0.5);
}
_onEndOfDayBacCallCount++;
}
else if (symbol == _ibmSymbol)
{
_onEndOfDayIbmCallCount++;
}
Log($"OnEndOfDay({symbol}) called: {UtcTime}." +
$" SPY count: {_onEndOfDaySpyCallCount}." +
$" IBM count: {_onEndOfDayIbmCallCount}." +
$" BAC count: {_onEndOfDayBacCallCount}");
}
///
/// Assert expected behavior
///
public override void OnEndOfAlgorithm()
{
if (_onEndOfDaySpyCallCount != 5)
{
throw new RegressionTestException($"OnEndOfDay(SPY) unexpected count call {_onEndOfDaySpyCallCount}");
}
if (_onEndOfDayBacCallCount != 4)
{
throw new RegressionTestException($"OnEndOfDay(BAC) unexpected count call {_onEndOfDayBacCallCount}");
}
if (_onEndOfDayIbmCallCount != 1)
{
throw new RegressionTestException($"OnEndOfDay(IBM) unexpected count call {_onEndOfDayIbmCallCount}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 7868;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "489.968%"},
{"Drawdown", "1.200%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "102295.22"},
{"Net Profit", "2.295%"},
{"Sharpe Ratio", "15.661"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "78.483%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "1.604"},
{"Beta", "0.954"},
{"Annual Standard Deviation", "0.223"},
{"Annual Variance", "0.05"},
{"Information Ratio", "22.254"},
{"Tracking Error", "0.068"},
{"Treynor Ratio", "3.656"},
{"Total Fees", "$22.11"},
{"Estimated Strategy Capacity", "$5600000.00"},
{"Lowest Capacity Asset", "NB R735QTJ8XC9X"},
{"Portfolio Turnover", "19.96%"},
{"Drawdown Recovery", "1"},
{"OrderListHash", "17eb374f011ccb57a28cef4b9a4585d8"}
};
}
}