/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Storage; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// /// This algorithm showcases some features of the feature. /// One use case is to make consecutive backtests run faster by caching the results of /// potentially time consuming operations. In this example, we save the results of a /// history call. This pattern can be equally applied to a machine learning model being /// trained and then saving the model weights in the object store. /// public class ObjectStoreExampleAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private const string SPY_Close_ObjectStore_Key = "spy_close"; private Symbol SPY; private Identity SPY_Close; private ExponentialMovingAverage SPY_Close_EMA10; private ExponentialMovingAverage SPY_Close_EMA50; // track last year of close and EMA10/EMA50 private readonly RollingWindow SPY_Close_History = new RollingWindow(252); private readonly RollingWindow SPY_Close_EMA10_History = new RollingWindow(252); private readonly RollingWindow SPY_Close_EMA50_History = new RollingWindow(252); public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); SPY = AddEquity("SPY", Resolution.Minute).Symbol; // define indicators on SPY daily closing prices SPY_Close = Identity(SPY, Resolution.Daily); SPY_Close_EMA10 = SPY_Close.EMA(10); SPY_Close_EMA50 = SPY_Close.EMA(50); // each time an indicator is updated, push the value into our history rolling windows SPY_Close.Updated += (sender, args) => { // each time we receive new closing price data, push our window to the object store SPY_Close_History.Add(args); }; SPY_Close_EMA10.Updated += (sender, args) => SPY_Close_EMA10_History.Add(args); SPY_Close_EMA50.Updated += (sender, args) => SPY_Close_EMA50_History.Add(args); if (ObjectStore.ContainsKey(SPY_Close_ObjectStore_Key)) { // our object store has our historical data saved, read the data // and push it through the indicators to warm everything up var values = ObjectStore.ReadJson(SPY_Close_ObjectStore_Key); Debug($"{SPY_Close_ObjectStore_Key} key exists in object store. Count: {values.Length}"); foreach (var value in values) { SPY_Close.Update(value); } } else { Debug($"{SPY_Close_ObjectStore_Key} key does not exist in object store. Fetching history..."); // if our object store doesn't have our data, fetch the history to initialize // we're pulling the last year's worth of SPY daily trade bars to fee into our indicators var history = History(SPY, TimeSpan.FromDays(365), Resolution.Daily); foreach (var tradeBar in history) { SPY_Close.Update(tradeBar.EndTime, tradeBar.Close); } // save our warm up data so next time we don't need to issue the history request var array = SPY_Close_History.Reverse().ToArray(); ObjectStore.SaveJson(SPY_Close_ObjectStore_Key, array); // Can also use ObjectStore.SaveBytes(key, byte[]) // and to read ObjectStore.ReadBytes(key) => byte[] // we can also get a file path for our data. some ML libraries require model // weights to be loaded directly from a file path. The object store can provide // a file path for any key by: ObjectStore.GetFilePath(key) => string (file path) } } public override void OnData(Slice slice) { if (SPY_Close_EMA10 > SPY_Close && SPY_Close_EMA10 > SPY_Close_EMA50) { SetHoldings(SPY, 1m); } else if (SPY_Close_EMA10 < SPY_Close && SPY_Close_EMA10 < SPY_Close_EMA50) { SetHoldings(SPY, -1m); } else if (Portfolio[SPY].IsLong) { if (SPY_Close_EMA10 < SPY_Close_EMA50) { Liquidate(SPY); } } else if (Portfolio[SPY].IsShort) { if (SPY_Close_EMA10 > SPY_Close_EMA50) { Liquidate(SPY); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 3943; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 249; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "271.453%"}, {"Drawdown", "2.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101691.92"}, {"Net Profit", "1.692%"}, {"Sharpe Ratio", "8.854"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "67.609%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.005"}, {"Beta", "0.996"}, {"Annual Standard Deviation", "0.222"}, {"Annual Variance", "0.049"}, {"Information Ratio", "-14.565"}, {"Tracking Error", "0.001"}, {"Treynor Ratio", "1.97"}, {"Total Fees", "$3.44"}, {"Estimated Strategy Capacity", "$56000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "19.93%"}, {"Drawdown Recovery", "3"}, {"OrderListHash", "3da9fa60bf95b9ed148b95e02e0cfc9e"} }; } }