/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using QuantConnect.Data.Market;
using System.Collections.Generic;
using QuantConnect.Securities.Positions;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting the behavior of specifying a null position group allowing us to fill orders which would be invalid if not
///
public class NullMarginMultipleOrdersRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private bool _placedTrades;
protected Symbol OptionSymbol { get; private set; }
public override void Initialize()
{
SetStartDate(2015, 12, 24);
SetEndDate(2015, 12, 24);
SetCash(10000);
OverrideMarginModels();
var equity = AddEquity("GOOG", leverage: 4);
var option = AddOption(equity.Symbol);
OptionSymbol = option.Symbol;
option.SetFilter(u => u.Strikes(-2, +2).Expiration(0, 180));
}
protected virtual void OverrideMarginModels()
{
Portfolio.SetPositions(SecurityPositionGroupModel.Null);
SetSecurityInitializer(security =>
{
security.SetBuyingPowerModel(new ConstantBuyingPowerModel(1));
});
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
OptionChain chain;
if (IsMarketOpen(OptionSymbol) && slice.OptionChains.TryGetValue(OptionSymbol, out chain))
{
// we find at the money (ATM) call contract with farthest expiration
var atmContracts = chain
.Where(contract => contract.Right == OptionRight.Call)
.OrderByDescending(x => x.Expiry)
.ThenBy(x => x.Strike)
.First();
if(!_placedTrades)
{
_placedTrades = true;
PlaceTrades(atmContracts);
}
}
}
}
protected virtual void PlaceTrades(OptionContract optionContract)
{
AssertState(MarketOrder(optionContract.Symbol.Underlying, 1000), 1, 1000);
AssertState(MarketOrder(optionContract.Symbol, -10), 2, 1010);
}
protected virtual void AssertState(OrderTicket ticket, int expectedGroupCount, int expectedMarginUsed)
{
if (ticket.Status != OrderStatus.Filled)
{
throw new RegressionTestException($"Unexpected order status {ticket.Status} for symbol {ticket.Symbol} and quantity {ticket.Quantity}");
}
if (Portfolio.Positions.Groups.Count != expectedGroupCount)
{
throw new RegressionTestException($"Unexpected position group count {Portfolio.Positions.Groups.Count} for symbol {ticket.Symbol} and quantity {ticket.Quantity}");
}
if(Portfolio.TotalMarginUsed != expectedMarginUsed)
{
throw new RegressionTestException($"Unexpected margin used {expectedMarginUsed}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public virtual bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public virtual List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public virtual long DataPoints => 15023;
///
/// Data Points count of the algorithm history
///
public virtual int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public virtual Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "10000"},
{"End Equity", "10658.5"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$11.50"},
{"Estimated Strategy Capacity", "$13000000.00"},
{"Lowest Capacity Asset", "GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "7580.62%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "ea13456d0c97785f9f2fc12842831990"}
};
}
}