/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Orders; using QuantConnect.Interfaces; using QuantConnect.Securities; using QuantConnect.Data.Market; using System.Collections.Generic; using QuantConnect.Securities.Positions; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting the behavior of specifying a null position group allowing us to fill orders which would be invalid if not /// public class NullMarginMultipleOrdersRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private bool _placedTrades; protected Symbol OptionSymbol { get; private set; } public override void Initialize() { SetStartDate(2015, 12, 24); SetEndDate(2015, 12, 24); SetCash(10000); OverrideMarginModels(); var equity = AddEquity("GOOG", leverage: 4); var option = AddOption(equity.Symbol); OptionSymbol = option.Symbol; option.SetFilter(u => u.Strikes(-2, +2).Expiration(0, 180)); } protected virtual void OverrideMarginModels() { Portfolio.SetPositions(SecurityPositionGroupModel.Null); SetSecurityInitializer(security => { security.SetBuyingPowerModel(new ConstantBuyingPowerModel(1)); }); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { OptionChain chain; if (IsMarketOpen(OptionSymbol) && slice.OptionChains.TryGetValue(OptionSymbol, out chain)) { // we find at the money (ATM) call contract with farthest expiration var atmContracts = chain .Where(contract => contract.Right == OptionRight.Call) .OrderByDescending(x => x.Expiry) .ThenBy(x => x.Strike) .First(); if(!_placedTrades) { _placedTrades = true; PlaceTrades(atmContracts); } } } } protected virtual void PlaceTrades(OptionContract optionContract) { AssertState(MarketOrder(optionContract.Symbol.Underlying, 1000), 1, 1000); AssertState(MarketOrder(optionContract.Symbol, -10), 2, 1010); } protected virtual void AssertState(OrderTicket ticket, int expectedGroupCount, int expectedMarginUsed) { if (ticket.Status != OrderStatus.Filled) { throw new RegressionTestException($"Unexpected order status {ticket.Status} for symbol {ticket.Symbol} and quantity {ticket.Quantity}"); } if (Portfolio.Positions.Groups.Count != expectedGroupCount) { throw new RegressionTestException($"Unexpected position group count {Portfolio.Positions.Groups.Count} for symbol {ticket.Symbol} and quantity {ticket.Quantity}"); } if(Portfolio.TotalMarginUsed != expectedMarginUsed) { throw new RegressionTestException($"Unexpected margin used {expectedMarginUsed}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public virtual bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 15023; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "10000"}, {"End Equity", "10658.5"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$11.50"}, {"Estimated Strategy Capacity", "$13000000.00"}, {"Lowest Capacity Asset", "GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "7580.62%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "ea13456d0c97785f9f2fc12842831990"} }; } }