/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data.Market; using QuantConnect.Securities.Option; using QuantConnect.Securities.Positions; namespace QuantConnect.Algorithm.CSharp { /// /// This algorithm demonstrate how to use OptionStrategies helper class to batch send orders for common strategies. /// In this case, the algorithm tests the Call Calendar Spread and Short Call Calendar Spread strategies. /// public class LongAndShortCallCalendarSpreadStrategiesAlgorithm : OptionStrategyFactoryMethodsBaseAlgorithm { protected override int ExpectedOrdersCount { get; } = 4; private OptionStrategy _callCalendarSpread; private OptionStrategy _shortCallCalendarSpread; protected override void TradeStrategy(OptionChain chain) { var contractsByStrike = chain .Where(x => x.Right == OptionRight.Call) .OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Value)) .GroupBy(x => x.Strike); foreach (var group in contractsByStrike) { var strike = group.Key; var contracts = group.OrderBy(x => x.Expiry).ToList(); if (contracts.Count < 2) continue; var nearExpiration = contracts[0].Expiry; var farExpiration = contracts[1].Expiry; _callCalendarSpread = OptionStrategies.CallCalendarSpread(_optionSymbol, strike, nearExpiration, farExpiration); _shortCallCalendarSpread = OptionStrategies.ShortCallCalendarSpread(_optionSymbol, strike, nearExpiration, farExpiration); Buy(_callCalendarSpread, 2); break; } } protected override void AssertStrategyPositionGroup(IPositionGroup positionGroup) { if (positionGroup.Positions.Count() != 2) { throw new RegressionTestException($"Expected position group to have 2 positions. Actual: {positionGroup.Positions.Count()}"); } var nearExpiration = _callCalendarSpread.OptionLegs.Min(leg => leg.Expiration); var nearExpirationPosition = positionGroup.Positions .Single(x => x.Symbol.ID.OptionRight == OptionRight.Call && x.Symbol.ID.Date == nearExpiration); if (nearExpirationPosition.Quantity != -2) { throw new RegressionTestException($"Expected near expiration position quantity to be -2. Actual: {nearExpirationPosition.Quantity}"); } var farExpiration = _callCalendarSpread.OptionLegs.Max(leg => leg.Expiration); var farExpirationPosition = positionGroup.Positions .Single(x => x.Symbol.ID.OptionRight == OptionRight.Call && x.Symbol.ID.Date == farExpiration); if (farExpirationPosition.Quantity != 2) { throw new RegressionTestException($"Expected far expiration position quantity to be 2. Actual: {farExpirationPosition.Quantity}"); } } protected override void LiquidateStrategy() { // We should be able to close the position using the inverse strategy (a short call calendar spread) Buy(_shortCallCalendarSpread, 2); } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public override bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public override List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public override long DataPoints => 2298; /// /// Data Points count of the algorithm history /// public override int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public override Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "4"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "1000000"}, {"End Equity", "999494.8"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$5.20"}, {"Estimated Strategy Capacity", "$7000.00"}, {"Lowest Capacity Asset", "GOOCV W78ZEOEHQRYE|GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "1.85%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "fde9204f63cc0d6676155381fc7537ff"} }; } }