/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Positions;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This algorithm demonstrate how to use OptionStrategies helper class to batch send orders for common strategies.
/// In this case, the algorithm tests the Call Calendar Spread and Short Call Calendar Spread strategies.
///
public class LongAndShortCallCalendarSpreadStrategiesAlgorithm : OptionStrategyFactoryMethodsBaseAlgorithm
{
protected override int ExpectedOrdersCount { get; } = 4;
private OptionStrategy _callCalendarSpread;
private OptionStrategy _shortCallCalendarSpread;
protected override void TradeStrategy(OptionChain chain)
{
var contractsByStrike = chain
.Where(x => x.Right == OptionRight.Call)
.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Value))
.GroupBy(x => x.Strike);
foreach (var group in contractsByStrike)
{
var strike = group.Key;
var contracts = group.OrderBy(x => x.Expiry).ToList();
if (contracts.Count < 2) continue;
var nearExpiration = contracts[0].Expiry;
var farExpiration = contracts[1].Expiry;
_callCalendarSpread = OptionStrategies.CallCalendarSpread(_optionSymbol, strike, nearExpiration, farExpiration);
_shortCallCalendarSpread = OptionStrategies.ShortCallCalendarSpread(_optionSymbol, strike, nearExpiration, farExpiration);
Buy(_callCalendarSpread, 2);
break;
}
}
protected override void AssertStrategyPositionGroup(IPositionGroup positionGroup)
{
if (positionGroup.Positions.Count() != 2)
{
throw new RegressionTestException($"Expected position group to have 2 positions. Actual: {positionGroup.Positions.Count()}");
}
var nearExpiration = _callCalendarSpread.OptionLegs.Min(leg => leg.Expiration);
var nearExpirationPosition = positionGroup.Positions
.Single(x => x.Symbol.ID.OptionRight == OptionRight.Call && x.Symbol.ID.Date == nearExpiration);
if (nearExpirationPosition.Quantity != -2)
{
throw new RegressionTestException($"Expected near expiration position quantity to be -2. Actual: {nearExpirationPosition.Quantity}");
}
var farExpiration = _callCalendarSpread.OptionLegs.Max(leg => leg.Expiration);
var farExpirationPosition = positionGroup.Positions
.Single(x => x.Symbol.ID.OptionRight == OptionRight.Call && x.Symbol.ID.Date == farExpiration);
if (farExpirationPosition.Quantity != 2)
{
throw new RegressionTestException($"Expected far expiration position quantity to be 2. Actual: {farExpirationPosition.Quantity}");
}
}
protected override void LiquidateStrategy()
{
// We should be able to close the position using the inverse strategy (a short call calendar spread)
Buy(_shortCallCalendarSpread, 2);
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public override bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public override List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public override long DataPoints => 2298;
///
/// Data Points count of the algorithm history
///
public override int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public override Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "4"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "1000000"},
{"End Equity", "999494.8"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$5.20"},
{"Estimated Strategy Capacity", "$7000.00"},
{"Lowest Capacity Asset", "GOOCV W78ZEOEHQRYE|GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "1.85%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "fde9204f63cc0d6676155381fc7537ff"}
};
}
}