/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm illustrating how to request history data for different data normalization modes. /// public class HistoryWithDifferentDataNormalizationModeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _aaplEquitySymbol; private Symbol _esFutureSymbol; public override void Initialize() { SetStartDate(2013, 10, 7); SetEndDate(2014, 1, 1); _aaplEquitySymbol = AddEquity("AAPL", Resolution.Daily).Symbol; _esFutureSymbol = AddFuture(Futures.Indices.SP500EMini, Resolution.Daily).Symbol; } public override void OnEndOfAlgorithm() { var equityDataNormalizationModes = new DataNormalizationMode[]{ DataNormalizationMode.Raw, DataNormalizationMode.Adjusted, DataNormalizationMode.SplitAdjusted }; CheckHistoryResultsForDataNormalizationModes(_aaplEquitySymbol, StartDate, EndDate, Resolution.Daily, equityDataNormalizationModes); var futureDataNormalizationModes = new DataNormalizationMode[]{ DataNormalizationMode.Raw, DataNormalizationMode.BackwardsRatio, DataNormalizationMode.BackwardsPanamaCanal, DataNormalizationMode.ForwardPanamaCanal }; CheckHistoryResultsForDataNormalizationModes(_esFutureSymbol, StartDate, EndDate, Resolution.Daily, futureDataNormalizationModes); } private void CheckHistoryResultsForDataNormalizationModes(Symbol symbol, DateTime start, DateTime end, Resolution resolution, DataNormalizationMode[] dataNormalizationModes) { var historyResults = dataNormalizationModes .Select(x => History(new [] { symbol }, start, end, resolution, dataNormalizationMode: x).ToList()) .ToList(); if (historyResults.Any(x => x.Count == 0 || x.Count != historyResults.First().Count)) { throw new RegressionTestException($"History results for {symbol} have different number of bars"); } // Check that, for each history result, close prices at each time are different for these securities (AAPL and ES) for (int j = 0; j < historyResults[0].Count; j++) { var closePrices = historyResults.Select(hr => hr[j].Bars.First().Value.Close).ToHashSet(); if (closePrices.Count != dataNormalizationModes.Length) { throw new RegressionTestException($"History results for {symbol} have different close prices at the same time"); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 1026; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 668; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "-4.244"}, {"Tracking Error", "0.086"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }