/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm illustrating how to request history data for different data normalization modes.
///
public class HistoryWithDifferentDataNormalizationModeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _aaplEquitySymbol;
private Symbol _esFutureSymbol;
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2014, 1, 1);
_aaplEquitySymbol = AddEquity("AAPL", Resolution.Daily).Symbol;
_esFutureSymbol = AddFuture(Futures.Indices.SP500EMini, Resolution.Daily).Symbol;
}
public override void OnEndOfAlgorithm()
{
var equityDataNormalizationModes = new DataNormalizationMode[]{
DataNormalizationMode.Raw,
DataNormalizationMode.Adjusted,
DataNormalizationMode.SplitAdjusted
};
CheckHistoryResultsForDataNormalizationModes(_aaplEquitySymbol, StartDate, EndDate, Resolution.Daily, equityDataNormalizationModes);
var futureDataNormalizationModes = new DataNormalizationMode[]{
DataNormalizationMode.Raw,
DataNormalizationMode.BackwardsRatio,
DataNormalizationMode.BackwardsPanamaCanal,
DataNormalizationMode.ForwardPanamaCanal
};
CheckHistoryResultsForDataNormalizationModes(_esFutureSymbol, StartDate, EndDate, Resolution.Daily, futureDataNormalizationModes);
}
private void CheckHistoryResultsForDataNormalizationModes(Symbol symbol, DateTime start, DateTime end, Resolution resolution,
DataNormalizationMode[] dataNormalizationModes)
{
var historyResults = dataNormalizationModes
.Select(x => History(new [] { symbol }, start, end, resolution, dataNormalizationMode: x).ToList())
.ToList();
if (historyResults.Any(x => x.Count == 0 || x.Count != historyResults.First().Count))
{
throw new RegressionTestException($"History results for {symbol} have different number of bars");
}
// Check that, for each history result, close prices at each time are different for these securities (AAPL and ES)
for (int j = 0; j < historyResults[0].Count; j++)
{
var closePrices = historyResults.Select(hr => hr[j].Bars.First().Value.Close).ToHashSet();
if (closePrices.Count != dataNormalizationModes.Length)
{
throw new RegressionTestException($"History results for {symbol} have different close prices at the same time");
}
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 1026;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 668;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-4.244"},
{"Tracking Error", "0.086"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}