/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting the behavior of auxiliary data history requests
///
public class HistoryAuxiliaryDataRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2021, 1, 1);
SetEndDate(2021, 1, 5);
var aapl = AddEquity("AAPL", Resolution.Daily).Symbol;
// multi symbol request
var spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
var multiSymbolRequest = History(new[] { aapl, spy }, 360, Resolution.Daily).ToList();
if (multiSymbolRequest.Count != 12)
{
throw new RegressionTestException($"Unexpected multi symbol dividend count: {multiSymbolRequest.Count}");
}
// continuous future mapping requests
var sp500 = QuantConnect.Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME);
var continuousFutureOpenInterestMapping = History(sp500, new DateTime(2007, 1, 1), new DateTime(2012, 1, 1),
dataMappingMode: DataMappingMode.OpenInterest).ToList();
if (continuousFutureOpenInterestMapping.Count != 9)
{
throw new RegressionTestException($"Unexpected continuous future mapping event count: {continuousFutureOpenInterestMapping.Count}");
}
var continuousFutureLastTradingDayMapping = History(sp500, new DateTime(2007, 1, 1),new DateTime(2012, 1, 1),
dataMappingMode: DataMappingMode.LastTradingDay).ToList();
if (continuousFutureLastTradingDayMapping.Count != 9)
{
throw new RegressionTestException($"Unexpected continuous future mapping event count: {continuousFutureLastTradingDayMapping.Count}");
}
// mapping dates should be different
if (Enumerable.SequenceEqual(continuousFutureOpenInterestMapping.Select(x => x.EndTime), continuousFutureLastTradingDayMapping.Select(x => x.EndTime)))
{
throw new RegressionTestException($"Unexpected continuous future mapping times");
}
var dividends = History(aapl, 360).ToList();
if (dividends.Count != 6)
{
throw new RegressionTestException($"Unexpected dividend count: {dividends.Count}");
}
foreach (var dividend in dividends)
{
if (dividend.Distribution == 0)
{
throw new RegressionTestException($"Unexpected Distribution: {dividend.Distribution}");
}
}
var splits = History(aapl, 360).ToList();
if (splits.Count != 2)
{
throw new RegressionTestException($"Unexpected split count: {splits.Count}");
}
foreach (var split in splits)
{
if (split.SplitFactor == 0)
{
throw new RegressionTestException($"Unexpected SplitFactor: {split.SplitFactor}");
}
}
var cryptoFuture = QuantConnect.Symbol.Create("BTCUSD", SecurityType.CryptoFuture, Market.Binance);
var marginInterests = History(cryptoFuture, 24 * 3, Resolution.Hour).ToList();
if (marginInterests.Count != 8)
{
throw new RegressionTestException($"Unexpected margin interest count: {marginInterests.Count}");
}
foreach (var marginInterest in marginInterests)
{
if (marginInterest.InterestRate == 0)
{
throw new RegressionTestException($"Unexpected InterestRate: {marginInterest.InterestRate}");
}
}
// last trading date on 2007-05-18
var delistedSymbol = QuantConnect.Symbol.Create("AAA.1", SecurityType.Equity, Market.USA);
var delistings = History(delistedSymbol, new DateTime(2007, 5, 15), new DateTime(2007, 5, 21)).ToList();
if (delistings.Count != 2)
{
throw new RegressionTestException($"Unexpected delistings count: {delistings.Count}");
}
if (delistings[0].Type != DelistingType.Warning)
{
throw new RegressionTestException($"Unexpected delisting: {delistings[0]}");
}
if (delistings[1].Type != DelistingType.Delisted)
{
throw new RegressionTestException($"Unexpected delisting: {delistings[1]}");
}
// get's remapped:
// 2008-09-30 spwr -> spwra
// 2011-11-17 spwra -> spwr
var remappedSymbol = QuantConnect.Symbol.Create("SPWR", SecurityType.Equity, Market.USA);
var symbolChangedEvents = History(remappedSymbol, new DateTime(2007, 1, 1), new DateTime(2012, 1, 1)).ToList();
if (symbolChangedEvents.Count != 2)
{
throw new RegressionTestException($"Unexpected SymbolChangedEvents count: {symbolChangedEvents.Count}");
}
if (symbolChangedEvents[0].OldSymbol != "SPWR" || symbolChangedEvents[0].NewSymbol != "SPWRA" || symbolChangedEvents[0].EndTime != new DateTime(2008, 9, 30))
{
throw new RegressionTestException($"Unexpected SymbolChangedEvents: {symbolChangedEvents[0]}");
}
if (symbolChangedEvents[1].NewSymbol != "SPWR" || symbolChangedEvents[1].OldSymbol != "SPWRA" || symbolChangedEvents[1].EndTime != new DateTime(2011, 11, 17))
{
throw new RegressionTestException($"Unexpected SymbolChangedEvents: {symbolChangedEvents[1]}");
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings("AAPL", 1);
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 24;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 50;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "235.317%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "101558.94"},
{"Net Profit", "1.559%"},
{"Sharpe Ratio", "13.436"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "95.977%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "1.873"},
{"Beta", "0.603"},
{"Annual Standard Deviation", "0.124"},
{"Annual Variance", "0.015"},
{"Information Ratio", "18.773"},
{"Tracking Error", "0.107"},
{"Treynor Ratio", "2.756"},
{"Total Fees", "$3.86"},
{"Estimated Strategy Capacity", "$1100000000.00"},
{"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"},
{"Portfolio Turnover", "19.55%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "7b1f04613621baa2333be0876f106ad3"}
};
}
}