/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using System.Collections.Generic;
using QuantConnect.Securities.Future;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm using and testing HSI futures and index
///
public class HSIFutureHourRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private int _symbolChangeEvent;
private Symbol _contractSymbol;
private Symbol _index;
private Symbol _futureSymbol;
///
/// The data resolution
///
protected virtual Resolution Resolution => Resolution.Hour;
///
/// Initialize your algorithm and add desired assets.
///
public override void Initialize()
{
SetStartDate(2013, 10, 20);
SetEndDate(2013, 10, 30);
SetAccountCurrency("HKD");
SetTimeZone(TimeZones.HongKong);
UniverseSettings.Resolution = Resolution;
_index = AddIndex("HSI", Resolution).Symbol;
var future = AddFuture(Futures.Indices.HangSeng, Resolution);
future.SetFilter(TimeSpan.Zero, TimeSpan.FromDays(182));
_futureSymbol = future.Symbol;
var seeder = new FuncSecuritySeeder(GetLastKnownPrices);
SetSecurityInitializer(security => seeder.SeedSecurity(security));
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
foreach (var changedEvent in slice.SymbolChangedEvents.Values)
{
Debug($"{Time} - SymbolChanged event: {changedEvent}");
if (Time.TimeOfDay != TimeSpan.Zero)
{
throw new RegressionTestException($"{Time} unexpected symbol changed event {changedEvent}!");
}
_symbolChangeEvent++;
}
if (!Portfolio.Invested)
{
foreach (var chain in slice.FutureChains)
{
// find the front contract expiring no earlier than in 90 days
var contract = (
from futuresContract in chain.Value.OrderBy(x => x.Expiry)
select futuresContract
).FirstOrDefault();
// if found, trade it
if (contract != null)
{
_contractSymbol = contract.Symbol;
MarketOrder(_contractSymbol, 1);
}
}
}
else
{
Liquidate();
}
}
public override void OnEndOfAlgorithm()
{
if (_symbolChangeEvent != 1)
{
throw new RegressionTestException($"Got no expected symbol changed event count {_symbolChangeEvent}!");
}
// Get the margin requirements
var buyingPowerModel = Securities[_contractSymbol].BuyingPowerModel;
var futureMarginModel = buyingPowerModel as FutureMarginModel;
if (buyingPowerModel == null)
{
throw new RegressionTestException($"Invalid buying power model. Found: {buyingPowerModel.GetType().Name}. Expected: {nameof(FutureMarginModel)}");
}
var initialOvernight = futureMarginModel.InitialOvernightMarginRequirement;
var maintenanceOvernight = futureMarginModel.MaintenanceOvernightMarginRequirement;
var initialIntraday = futureMarginModel.InitialIntradayMarginRequirement;
var maintenanceIntraday = futureMarginModel.MaintenanceIntradayMarginRequirement;
var lastDataFuture = Securities[_futureSymbol].GetLastData();
if (lastDataFuture == null || (lastDataFuture.EndTime - lastDataFuture.Time) != TimeSpan.FromHours(Resolution == Resolution.Hour ? 1 : 7.25)
|| lastDataFuture.EndTime.Date != lastDataFuture.Time.Date)
{
throw new RegressionTestException($"Unexpected data for symbol {_futureSymbol}!");
}
var lastDataIndex = Securities[_index].GetLastData();
if (lastDataIndex == null || (lastDataIndex.EndTime - lastDataIndex.Time) != TimeSpan.FromHours(Resolution == Resolution.Hour ? 1 : 6.5)
|| lastDataFuture.EndTime.Date != lastDataFuture.Time.Date)
{
throw new RegressionTestException($"Unexpected data for symbol {_index}!");
}
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
foreach (var addedSecurity in changes.AddedSecurities)
{
if (addedSecurity.Symbol.SecurityType == SecurityType.Future
&& !addedSecurity.Symbol.IsCanonical()
&& !addedSecurity.HasData)
{
throw new RegressionTestException($"Future contracts did not work up as expected: {addedSecurity.Symbol}");
}
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public virtual long DataPoints => 652;
///
/// Data Points count of the algorithm history
///
public virtual int AlgorithmHistoryDataPoints => 25;
///
/// Final status of the algorithm
///
public virtual AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public virtual Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "57"},
{"Average Win", "1.83%"},
{"Average Loss", "-1.31%"},
{"Compounding Annual Return", "-99.930%"},
{"Drawdown", "23.000%"},
{"Expectancy", "-0.572"},
{"Start Equity", "100000"},
{"End Equity", "80330"},
{"Net Profit", "-19.670%"},
{"Sharpe Ratio", "-1.298"},
{"Sortino Ratio", "-1.254"},
{"Probabilistic Sharpe Ratio", "1.073%"},
{"Loss Rate", "82%"},
{"Win Rate", "18%"},
{"Profit-Loss Ratio", "1.40"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0.772"},
{"Annual Variance", "0.596"},
{"Information Ratio", "-1.288"},
{"Tracking Error", "0.772"},
{"Treynor Ratio", "0"},
{"Total Fees", "$2280.00"},
{"Estimated Strategy Capacity", "$120000000.00"},
{"Lowest Capacity Asset", "HSI VL6DN7UV65S9"},
{"Portfolio Turnover", "7099.25%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "f7382e07fdf6b8a39ee00ea5092fa831"}
};
}
}