/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Securities;
using QuantConnect.Interfaces;
using System.Collections.Generic;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Demonstration of how to define a universe using the fundamental data
///
public class FundamentalRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int NumberOfSymbolsFundamental = 2;
private SecurityChanges _changes = SecurityChanges.None;
private Universe _universe;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 26);
SetEndDate(2014, 04, 07);
_universe = AddUniverse(FundamentalSelectionFunction);
// before we add any symbol
AssertFundamentalUniverseData();
AddEquity("SPY");
AddEquity("AAPL");
// Request fundamental data for symbols at current algorithm time
var ibm = QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA);
var ibmFundamental = Fundamentals(ibm);
if (Time != StartDate || Time != ibmFundamental.EndTime)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamental)} time {ibmFundamental.EndTime}");
}
if (ibmFundamental.Price == 0)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamental)} IBM price!");
}
var nb = QuantConnect.Symbol.Create("NB", SecurityType.Equity, Market.USA);
var fundamentals = Fundamentals(new List{ nb, ibm }).ToList();
if (fundamentals.Count != 2)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamental)} count {fundamentals.Count}! Expected 2");
}
// Request historical fundamental data for symbols
var history = History(Securities.Keys, new TimeSpan(2, 0, 0, 0)).ToList();
if(history.Count != 2)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamental)} history count {history.Count}! Expected 2");
}
if (history[0].Values.Count != 2)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamental)} data count {history[0].Values.Count}, expected 2!");
}
foreach (var ticker in new[] {"AAPL", "SPY"})
{
if (!history[0].TryGetValue(ticker, out var fundamental) || fundamental.Price == 0)
{
throw new RegressionTestException($"Unexpected {ticker} fundamental data");
}
}
AssertFundamentalUniverseData();
}
private void AssertFundamentalUniverseData()
{
// we run it twice just to match the history request data point count with the python version which has 1 extra different api test/assert
for (var i = 0; i < 2; i++)
{
// Request historical fundamental data for all symbols, passing the universe instance
var universeDataPerTime = History(_universe, new TimeSpan(2, 0, 0, 0)).ToList();
if (universeDataPerTime.Count != 2)
{
throw new RegressionTestException($"Unexpected {nameof(Fundamentals)} history count {universeDataPerTime.Count}! Expected 1");
}
foreach (var universeDataCollection in universeDataPerTime)
{
AssertFundamentalEnumerator(universeDataCollection, "1");
}
}
// Passing through the unvierse type and symbol
var enumerableOfDataDictionary = History(new[] { _universe.Symbol }, 100);
foreach (var selectionCollectionForADay in enumerableOfDataDictionary)
{
AssertFundamentalEnumerator(selectionCollectionForADay[_universe.Symbol], "2");
}
}
private void AssertFundamentalEnumerator(IEnumerable enumerable, string caseName)
{
var dataPointCount = 0;
// note we need to cast to Fundamental type
foreach (Fundamental fundamental in enumerable)
{
dataPointCount++;
}
if (dataPointCount < 7000)
{
throw new RegressionTestException($"Unexpected historical {nameof(Fundamentals)} data count {dataPointCount} case {caseName}! Expected > 7000");
}
}
// sort the data by daily dollar volume and take the top 'NumberOfSymbolsCoarse'
public IEnumerable FundamentalSelectionFunction(IEnumerable fundamental)
{
// select only symbols with fundamental data and sort descending by daily dollar volume
var sortedByDollarVolume = fundamental
.Where(x => x.Price > 1)
.OrderByDescending(x => x.DollarVolume);
// sort descending by P/E ratio
var sortedByPeRatio = sortedByDollarVolume.OrderByDescending(x => x.ValuationRatios.PERatio);
// take the top entries from our sorted collection
var topFine = sortedByPeRatio.Take(NumberOfSymbolsFundamental);
// we need to return only the symbol objects
return topFine.Select(x => x.Symbol);
}
public override void OnData(Slice slice)
{
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, 0.02m);
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 77169;
///
/// Data Points count of the algorithm history
///
public virtual int AlgorithmHistoryDataPoints => 16;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "-1.016%"},
{"Drawdown", "0.100%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "99963.64"},
{"Net Profit", "-0.036%"},
{"Sharpe Ratio", "-4.731"},
{"Sortino Ratio", "-6.776"},
{"Probabilistic Sharpe Ratio", "24.373%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.013"},
{"Beta", "0.023"},
{"Annual Standard Deviation", "0.003"},
{"Annual Variance", "0"},
{"Information Ratio", "0.607"},
{"Tracking Error", "0.095"},
{"Treynor Ratio", "-0.654"},
{"Total Fees", "$2.00"},
{"Estimated Strategy Capacity", "$1900000000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "0.30%"},
{"Drawdown Recovery", "5"},
{"OrderListHash", "9b3bf202c3d5707779f25e9c7f7fdc92"}
};
}
}