/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Data; using QuantConnect.Interfaces; using System.Collections.Generic; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; namespace QuantConnect.Algorithm.CSharp { /// /// Regression test algorithm for scheduled universe selection and warmup GH 3890 /// public class FundamentalCustomSelectionTimeWarmupRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly TimeSpan _warmupSpan = TimeSpan.FromDays(3); private int _specificDateSelection; private int _monthStartSelection; private readonly Symbol _symbol = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA); /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2014, 03, 27); SetEndDate(2014, 05, 10); UniverseSettings.Resolution = Resolution.Daily; AddUniverse(DateRules.MonthStart(), SelectionFunction_MonthStart); UniverseSettings.Schedule.On(DateRules.On( new DateTime(2013, 05, 9), // really old date will be ignored new DateTime(2014, 03, 24), // data for this date will be used to trigger the initial selection new DateTime(2014, 03, 26), // date during warmup new DateTime(2014, 05, 9), // after warmup new DateTime(2020, 05, 9))); // after backtest ends -> wont be executed AddUniverse(FundamentalUniverse.USA(SelectionFunction_SpecificDate)); SetWarmUp(_warmupSpan); } public IEnumerable SelectionFunction_SpecificDate(IEnumerable coarse) { if (_specificDateSelection++ == 0) { if (Time != StartDate.Add(-_warmupSpan)) { throw new RegressionTestException($"Month Start unexpected initial selection: {Time}"); } } else if (Time != new DateTime(2014, 3, 26) && Time != new DateTime(2014, 5, 9)) { throw new RegressionTestException($"SelectionFunction_SpecificDate unexpected selection: {Time}"); } return new[] { _symbol }; } public IEnumerable SelectionFunction_MonthStart(IEnumerable coarse) { if (_monthStartSelection++ == 0) { if (Time != StartDate.Add(-_warmupSpan)) { throw new RegressionTestException($"Month Start unexpected initial selection: {Time}"); } } else if (Time != new DateTime(2014, 4, 1) && Time != new DateTime(2014, 5, 1)) { throw new RegressionTestException($"Month Start unexpected selection: {Time}"); } return new[] { _symbol }; } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested && !IsWarmingUp) { SetHoldings(_symbol, 1); Debug($"Purchased Stock {_symbol}"); } } public override void OnEndOfAlgorithm() { if (_monthStartSelection != 3) { throw new RegressionTestException($"Month start unexpected selection count: {_monthStartSelection}"); } if (_specificDateSelection != 3) { throw new RegressionTestException($"Specific date unexpected selection count: {_specificDateSelection}"); } } /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 14470; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "13.629%"}, {"Drawdown", "3.900%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101540.32"}, {"Net Profit", "1.540%"}, {"Sharpe Ratio", "0.947"}, {"Sortino Ratio", "0.896"}, {"Probabilistic Sharpe Ratio", "49.649%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.019"}, {"Beta", "0.99"}, {"Annual Standard Deviation", "0.096"}, {"Annual Variance", "0.009"}, {"Information Ratio", "-2.694"}, {"Tracking Error", "0.007"}, {"Treynor Ratio", "0.092"}, {"Total Fees", "$3.09"}, {"Estimated Strategy Capacity", "$800000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "2.27%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "8c0997bfe6577a63b266bcf91bce1882"} }; } }