/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using System.Collections.Generic;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression test algorithm for scheduled universe selection GH 3890
///
public class FundamentalCustomSelectionTimeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private int _specificDateSelection;
private int _monthStartSelection;
private int _monthEndSelection;
private readonly Symbol _symbol = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2014, 03, 25);
SetEndDate(2014, 05, 10);
UniverseSettings.Resolution = Resolution.Daily;
// Test use case A
AddUniverse(DateRules.MonthStart(), SelectionFunction_MonthStart);
// Test use case B
var otherSettings = new UniverseSettings(UniverseSettings);
otherSettings.Schedule.On(DateRules.MonthEnd());
AddUniverse(FundamentalUniverse.USA(SelectionFunction_MonthEnd, otherSettings));
// Test use case C
UniverseSettings.Schedule.On(DateRules.On(new DateTime(2014, 05, 9)));
AddUniverse(FundamentalUniverse.USA(SelectionFunction_SpecificDate));
}
public IEnumerable SelectionFunction_SpecificDate(IEnumerable coarse)
{
_specificDateSelection++;
if (Time != new DateTime(2014, 05, 9))
{
throw new RegressionTestException($"SelectionFunction_SpecificDate unexpected selection: {Time}");
}
return new[] { _symbol };
}
public IEnumerable SelectionFunction_MonthStart(IEnumerable coarse)
{
if (_monthStartSelection++ == 0)
{
if (Time != StartDate)
{
throw new RegressionTestException($"Month Start unexpected initial selection: {Time}");
}
}
else if (Time != new DateTime(2014, 4, 1)
&& Time != new DateTime(2014, 5, 1))
{
throw new RegressionTestException($"Month Start unexpected selection: {Time}");
}
return new[] { _symbol };
}
public IEnumerable SelectionFunction_MonthEnd(IEnumerable coarse)
{
if (_monthEndSelection++ == 0)
{
if (Time != StartDate)
{
throw new RegressionTestException($"Month End unexpected initial selection: {Time}");
}
}
else if (Time != new DateTime(2014, 3, 31)
&& Time != new DateTime(2014, 4, 30))
{
throw new RegressionTestException($"Month End unexpected selection: {Time}");
}
return new[] { _symbol };
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings(_symbol, 1);
Debug($"Purchased Stock {_symbol}");
}
}
public override void OnEndOfAlgorithm()
{
if (_monthEndSelection != 3)
{
throw new RegressionTestException($"Month End unexpected selection count: {_monthEndSelection}");
}
if (_monthStartSelection != 3)
{
throw new RegressionTestException($"Month start unexpected selection count: {_monthStartSelection}");
}
if (_specificDateSelection != 1)
{
throw new RegressionTestException($"Specific date unexpected selection count: {_specificDateSelection}");
}
}
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 14466;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "4.334%"},
{"Drawdown", "3.900%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100532.22"},
{"Net Profit", "0.532%"},
{"Sharpe Ratio", "0.28"},
{"Sortino Ratio", "0.283"},
{"Probabilistic Sharpe Ratio", "39.422%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.022"},
{"Beta", "1.018"},
{"Annual Standard Deviation", "0.099"},
{"Annual Variance", "0.01"},
{"Information Ratio", "-2.462"},
{"Tracking Error", "0.009"},
{"Treynor Ratio", "0.027"},
{"Total Fees", "$3.07"},
{"Estimated Strategy Capacity", "$920000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "2.20%"},
{"Drawdown Recovery", "5"},
{"OrderListHash", "87438e51988f37757a2d7f97389483ea"}
};
}
}