/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Data; using QuantConnect.Interfaces; using System.Collections.Generic; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; namespace QuantConnect.Algorithm.CSharp { /// /// Regression test algorithm for scheduled universe selection GH 3890 /// public class FundamentalCustomSelectionTimeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private int _specificDateSelection; private int _monthStartSelection; private int _monthEndSelection; private readonly Symbol _symbol = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA); /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2014, 03, 25); SetEndDate(2014, 05, 10); UniverseSettings.Resolution = Resolution.Daily; // Test use case A AddUniverse(DateRules.MonthStart(), SelectionFunction_MonthStart); // Test use case B var otherSettings = new UniverseSettings(UniverseSettings); otherSettings.Schedule.On(DateRules.MonthEnd()); AddUniverse(FundamentalUniverse.USA(SelectionFunction_MonthEnd, otherSettings)); // Test use case C UniverseSettings.Schedule.On(DateRules.On(new DateTime(2014, 05, 9))); AddUniverse(FundamentalUniverse.USA(SelectionFunction_SpecificDate)); } public IEnumerable SelectionFunction_SpecificDate(IEnumerable coarse) { _specificDateSelection++; if (Time != new DateTime(2014, 05, 9)) { throw new RegressionTestException($"SelectionFunction_SpecificDate unexpected selection: {Time}"); } return new[] { _symbol }; } public IEnumerable SelectionFunction_MonthStart(IEnumerable coarse) { if (_monthStartSelection++ == 0) { if (Time != StartDate) { throw new RegressionTestException($"Month Start unexpected initial selection: {Time}"); } } else if (Time != new DateTime(2014, 4, 1) && Time != new DateTime(2014, 5, 1)) { throw new RegressionTestException($"Month Start unexpected selection: {Time}"); } return new[] { _symbol }; } public IEnumerable SelectionFunction_MonthEnd(IEnumerable coarse) { if (_monthEndSelection++ == 0) { if (Time != StartDate) { throw new RegressionTestException($"Month End unexpected initial selection: {Time}"); } } else if (Time != new DateTime(2014, 3, 31) && Time != new DateTime(2014, 4, 30)) { throw new RegressionTestException($"Month End unexpected selection: {Time}"); } return new[] { _symbol }; } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings(_symbol, 1); Debug($"Purchased Stock {_symbol}"); } } public override void OnEndOfAlgorithm() { if (_monthEndSelection != 3) { throw new RegressionTestException($"Month End unexpected selection count: {_monthEndSelection}"); } if (_monthStartSelection != 3) { throw new RegressionTestException($"Month start unexpected selection count: {_monthStartSelection}"); } if (_specificDateSelection != 1) { throw new RegressionTestException($"Specific date unexpected selection count: {_specificDateSelection}"); } } /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 14466; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "4.334%"}, {"Drawdown", "3.900%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100532.22"}, {"Net Profit", "0.532%"}, {"Sharpe Ratio", "0.28"}, {"Sortino Ratio", "0.283"}, {"Probabilistic Sharpe Ratio", "39.422%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.022"}, {"Beta", "1.018"}, {"Annual Standard Deviation", "0.099"}, {"Annual Variance", "0.01"}, {"Information Ratio", "-2.462"}, {"Tracking Error", "0.009"}, {"Treynor Ratio", "0.027"}, {"Total Fees", "$3.07"}, {"Estimated Strategy Capacity", "$920000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "2.20%"}, {"Drawdown Recovery", "5"}, {"OrderListHash", "87438e51988f37757a2d7f97389483ea"} }; } }