/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// This algorithm is a test case for adding forex symbols at a higher resolution of an existing internal feed. /// The second symbol is added in the OnData method. /// public class ForexInternalFeedOnDataHigherResolutionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly Dictionary _dataPointsPerSymbol = new Dictionary(); private bool _added; private Symbol _eurusd; private DateTime lastDataTime = DateTime.MinValue; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 10, 7); SetEndDate(2013, 10, 8); SetCash(100000); _eurusd = QuantConnect.Symbol.Create("EURUSD", SecurityType.Forex, Market.Oanda); var eurgbp = AddForex("EURGBP", Resolution.Daily); _dataPointsPerSymbol.Add(eurgbp.Symbol, 0); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (lastDataTime == slice.Time) { throw new RegressionTestException("Duplicate time for current data and last data slice"); } lastDataTime = slice.Time; if (_added) { var eurUsdSubscription = SubscriptionManager.SubscriptionDataConfigService .GetSubscriptionDataConfigs(_eurusd, includeInternalConfigs:true) .Single(); if (eurUsdSubscription.IsInternalFeed) { throw new RegressionTestException("Unexpected internal 'EURUSD' Subscription"); } } if (!_added) { var eurUsdSubscription = SubscriptionManager.SubscriptionDataConfigService .GetSubscriptionDataConfigs(_eurusd, includeInternalConfigs: true) .Single(); if (!eurUsdSubscription.IsInternalFeed) { throw new RegressionTestException("Unexpected not internal 'EURUSD' Subscription"); } AddForex("EURUSD", Resolution.Hour); _dataPointsPerSymbol.Add(_eurusd, 0); _added = true; } foreach (var kvp in slice) { var symbol = kvp.Key; _dataPointsPerSymbol[symbol]++; Log($"{Time} {symbol.Value} {kvp.Value.Price} EndTime {kvp.Value.EndTime}"); } } /// /// End of algorithm run event handler. This method is called at the end of a backtest or live trading operation. Intended for closing out logs. /// public override void OnEndOfAlgorithm() { // EURUSD has only one day of hourly data, because it was added on the first time step instead of during Initialize var expectedDataPointsPerSymbol = new Dictionary { // 1 daily bar 10/7/2013 8:00:00 PM // Hour resolution 'EURUSD added // 1 daily bar '10/8/2013 8:00:00 PM' // we start to FF // +4 fill forwarded bars till '10/9/2013 12:00:00 AM' { "EURGBP", 6}, { "EURUSD", 28 } }; foreach (var kvp in _dataPointsPerSymbol) { var symbol = kvp.Key; var actualDataPoints = _dataPointsPerSymbol[symbol]; Log($"Data points for symbol {symbol.Value}: {actualDataPoints}"); if (actualDataPoints != expectedDataPointsPerSymbol[symbol.Value]) { throw new RegressionTestException($"Data point count mismatch for symbol {symbol.Value}: expected: {expectedDataPointsPerSymbol[symbol.Value]}, actual: {actualDataPoints}"); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 63; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 120; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000.00"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }