/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm that test if the fill prices are the correct quote side.
///
///
///
///
public class EquityTradeAndQuotesRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _symbol;
private bool _canTrade;
private int _quoteCounter;
private int _tradeCounter;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
SetSecurityInitializer(x => x.SetDataNormalizationMode(DataNormalizationMode.Raw));
_symbol = AddEquity("IBM", Resolution.Minute).Symbol;
AddEquity("AAPL", Resolution.Daily);
// 2013-10-07 was Monday, that's why we ask 3 days history to get data from previous Friday.
var history = History(new[] { _symbol }, TimeSpan.FromDays(3), Resolution.Minute).ToList();
Log($"{Time} - history.Count: {history.Count}");
const int expectedSliceCount = 390;
if (history.Count != expectedSliceCount)
{
throw new RegressionTestException($"History slices - expected: {expectedSliceCount}, actual: {history.Count}");
}
if (history.Any(s => s.Bars.Count != 1 && s.QuoteBars.Count != 1))
{
throw new RegressionTestException($"History not all slices have trades and quotes.");
}
Schedule.On(DateRules.EveryDay(_symbol), TimeRules.AfterMarketOpen(_symbol, 0), () => { _canTrade = true; });
Schedule.On(DateRules.EveryDay(_symbol), TimeRules.BeforeMarketClose(_symbol, 16), () => { _canTrade = false; });
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
_quoteCounter += slice.QuoteBars.Count;
_tradeCounter += slice.Bars.Count;
if (!Portfolio.Invested && _canTrade)
{
SetHoldings(_symbol, 1);
Log($"Purchased Security {_symbol.ID}");
}
if (Time.Minute % 15 == 0)
{
Liquidate();
}
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
foreach (var addedSecurity in changes.AddedSecurities)
{
var subscriptions = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(addedSecurity.Symbol);
if (addedSecurity.Symbol == _symbol)
{
if (!(subscriptions.Count == 2 &&
subscriptions.Any(s => s.TickType == TickType.Trade) &&
subscriptions.Any(s => s.TickType == TickType.Quote)))
{
throw new RegressionTestException($"Subscriptions were not correctly added for high resolution.");
}
}
else
{
if (subscriptions.Single().TickType != TickType.Trade)
{
throw new RegressionTestException($"Subscriptions were not correctly added for low resolution.");
}
}
}
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status == OrderStatus.Filled)
{
Log($"{Time:s} {orderEvent.Direction}");
var expectedFillPrice = orderEvent.Direction == OrderDirection.Buy ? Securities[_symbol].AskPrice : Securities[_symbol].BidPrice;
if (orderEvent.FillPrice != expectedFillPrice)
{
throw new RegressionTestException($"Fill price is not the expected for OrderId {orderEvent.OrderId} at Algorithm Time {Time:s}." +
$"\n\tExpected fill price: {expectedFillPrice}, Actual fill price: {orderEvent.FillPrice}");
}
}
}
public override void OnEndOfAlgorithm()
{
// We expect at least 390 * 5 = 1950 minute bar
// + 5 daily bars, but those are pumped into OnData every minute
if (_tradeCounter <= 1955)
{
throw new RegressionTestException($"Fail at trade bars count expected >= 1955, actual: {_tradeCounter}.");
}
// We expect 390 * 5 = 1950 quote bars.
if (_quoteCounter != 1950)
{
throw new RegressionTestException($"Fail at trade bars count expected: 1950, actual: {_quoteCounter}.");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 5504;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 780;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "250"},
{"Average Win", "0.12%"},
{"Average Loss", "-0.10%"},
{"Compounding Annual Return", "-88.292%"},
{"Drawdown", "3.300%"},
{"Expectancy", "-0.225"},
{"Start Equity", "100000"},
{"End Equity", "97294.97"},
{"Net Profit", "-2.705%"},
{"Sharpe Ratio", "-5.072"},
{"Sortino Ratio", "-5.033"},
{"Probabilistic Sharpe Ratio", "1.585%"},
{"Loss Rate", "65%"},
{"Win Rate", "35%"},
{"Profit-Loss Ratio", "1.20"},
{"Alpha", "-1.882"},
{"Beta", "0.571"},
{"Annual Standard Deviation", "0.149"},
{"Annual Variance", "0.022"},
{"Information Ratio", "-22.183"},
{"Tracking Error", "0.123"},
{"Treynor Ratio", "-1.323"},
{"Total Fees", "$670.74"},
{"Estimated Strategy Capacity", "$170000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "4996.13%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "c65a9aa12b55e53a49a29cd28a358fcd"}
};
}
}