/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; using QuantConnect.Orders; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm that test if the fill prices are the correct quote side. /// /// /// /// public class EquityTradeAndQuotesRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _symbol; private bool _canTrade; private int _quoteCounter; private int _tradeCounter; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 10, 07); //Set Start Date SetEndDate(2013, 10, 11); //Set End Date SetCash(100000); //Set Strategy Cash SetSecurityInitializer(x => x.SetDataNormalizationMode(DataNormalizationMode.Raw)); _symbol = AddEquity("IBM", Resolution.Minute).Symbol; AddEquity("AAPL", Resolution.Daily); // 2013-10-07 was Monday, that's why we ask 3 days history to get data from previous Friday. var history = History(new[] { _symbol }, TimeSpan.FromDays(3), Resolution.Minute).ToList(); Log($"{Time} - history.Count: {history.Count}"); const int expectedSliceCount = 390; if (history.Count != expectedSliceCount) { throw new RegressionTestException($"History slices - expected: {expectedSliceCount}, actual: {history.Count}"); } if (history.Any(s => s.Bars.Count != 1 && s.QuoteBars.Count != 1)) { throw new RegressionTestException($"History not all slices have trades and quotes."); } Schedule.On(DateRules.EveryDay(_symbol), TimeRules.AfterMarketOpen(_symbol, 0), () => { _canTrade = true; }); Schedule.On(DateRules.EveryDay(_symbol), TimeRules.BeforeMarketClose(_symbol, 16), () => { _canTrade = false; }); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { _quoteCounter += slice.QuoteBars.Count; _tradeCounter += slice.Bars.Count; if (!Portfolio.Invested && _canTrade) { SetHoldings(_symbol, 1); Log($"Purchased Security {_symbol.ID}"); } if (Time.Minute % 15 == 0) { Liquidate(); } } public override void OnSecuritiesChanged(SecurityChanges changes) { foreach (var addedSecurity in changes.AddedSecurities) { var subscriptions = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(addedSecurity.Symbol); if (addedSecurity.Symbol == _symbol) { if (!(subscriptions.Count == 2 && subscriptions.Any(s => s.TickType == TickType.Trade) && subscriptions.Any(s => s.TickType == TickType.Quote))) { throw new RegressionTestException($"Subscriptions were not correctly added for high resolution."); } } else { if (subscriptions.Single().TickType != TickType.Trade) { throw new RegressionTestException($"Subscriptions were not correctly added for low resolution."); } } } } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Filled) { Log($"{Time:s} {orderEvent.Direction}"); var expectedFillPrice = orderEvent.Direction == OrderDirection.Buy ? Securities[_symbol].AskPrice : Securities[_symbol].BidPrice; if (orderEvent.FillPrice != expectedFillPrice) { throw new RegressionTestException($"Fill price is not the expected for OrderId {orderEvent.OrderId} at Algorithm Time {Time:s}." + $"\n\tExpected fill price: {expectedFillPrice}, Actual fill price: {orderEvent.FillPrice}"); } } } public override void OnEndOfAlgorithm() { // We expect at least 390 * 5 = 1950 minute bar // + 5 daily bars, but those are pumped into OnData every minute if (_tradeCounter <= 1955) { throw new RegressionTestException($"Fail at trade bars count expected >= 1955, actual: {_tradeCounter}."); } // We expect 390 * 5 = 1950 quote bars. if (_quoteCounter != 1950) { throw new RegressionTestException($"Fail at trade bars count expected: 1950, actual: {_quoteCounter}."); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 5504; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 780; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "250"}, {"Average Win", "0.12%"}, {"Average Loss", "-0.10%"}, {"Compounding Annual Return", "-88.292%"}, {"Drawdown", "3.300%"}, {"Expectancy", "-0.225"}, {"Start Equity", "100000"}, {"End Equity", "97294.97"}, {"Net Profit", "-2.705%"}, {"Sharpe Ratio", "-5.072"}, {"Sortino Ratio", "-5.033"}, {"Probabilistic Sharpe Ratio", "1.585%"}, {"Loss Rate", "65%"}, {"Win Rate", "35%"}, {"Profit-Loss Ratio", "1.20"}, {"Alpha", "-1.882"}, {"Beta", "0.571"}, {"Annual Standard Deviation", "0.149"}, {"Annual Variance", "0.022"}, {"Information Ratio", "-22.183"}, {"Tracking Error", "0.123"}, {"Treynor Ratio", "-1.323"}, {"Total Fees", "$670.74"}, {"Estimated Strategy Capacity", "$170000.00"}, {"Lowest Capacity Asset", "IBM R735QTJ8XC9X"}, {"Portfolio Turnover", "4996.13%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "c65a9aa12b55e53a49a29cd28a358fcd"} }; } }