/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Strategy example using a portfolio of ETF Global Rotation
///
///
///
///
public class EtfGlobalRotationAlgorithm : QCAlgorithm
{
// we'll use this to tell us when the month has ended
private DateTime _lastRotationTime = DateTime.MinValue;
private TimeSpan _rotationInterval = TimeSpan.FromDays(30);
private bool _first = true;
// these are the growth symbols we'll rotate through
List _growthSymbols = new List
{
"MDY", // US S&P mid cap 400
"IEV", // iShares S&P europe 350
"EEM", // iShared MSCI emerging markets
"ILF", // iShares S&P latin america
"EPP" // iShared MSCI Pacific ex-Japan
};
// these are the safety symbols we go to when things are looking bad for growth
List _safetySymbols = new List
{
"EDV", // Vangaurd TSY 25yr+
"SHY" // Barclays Low Duration TSY
};
// we'll hold some computed data in these guys
List _symbolData = new List();
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetCash(25000);
SetStartDate(2007, 1, 1);
foreach (var symbol in _growthSymbols.Union(_safetySymbols))
{
// ideally we would use daily data
AddSecurity(SecurityType.Equity, symbol, Resolution.Minute);
var oneMonthPerformance = MOM(symbol, 30, Resolution.Daily);
var threeMonthPerformance = MOM(symbol, 90, Resolution.Daily);
_symbolData.Add(new SymbolData
{
Symbol = symbol,
OneMonthPerformance = oneMonthPerformance,
ThreeMonthPerformance = threeMonthPerformance
});
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
try
{
// the first time we come through here we'll need to do some things such as allocation
// and initializing our symbol data
if (_first)
{
_first = false;
_lastRotationTime = Time;
return;
}
var delta = Time.Subtract(_lastRotationTime);
if (delta > _rotationInterval)
{
_lastRotationTime = Time;
// pick which one is best from growth and safety symbols
var orderedObjScores = _symbolData.OrderByDescending(x => x.ObjectiveScore).ToList();
foreach (var orderedObjScore in orderedObjScores)
{
Log($">>SCORE>>{orderedObjScore.Symbol}>>{orderedObjScore.ObjectiveScore.ToStringInvariant()}");
}
var bestGrowth = orderedObjScores.First();
if (bestGrowth.ObjectiveScore > 0)
{
if (Portfolio[bestGrowth.Symbol].Quantity == 0)
{
Log("PREBUY>>LIQUIDATE>>");
Liquidate();
}
Log($">>BUY>>{bestGrowth.Symbol}@{(100 * bestGrowth.OneMonthPerformance).ToStringInvariant("00.00")}");
var qty = Portfolio.MarginRemaining / Securities[bestGrowth.Symbol].Close;
MarketOrder(bestGrowth.Symbol, (int) qty);
}
else
{
// if no one has a good objective score then let's hold cash this month to be safe
Log(">>LIQUIDATE>>CASH");
Liquidate();
}
}
}
catch (RegressionTestException ex)
{
Error("OnData: " + ex.Message + "\r\n\r\n" + ex.StackTrace);
}
}
}
class SymbolData
{
public string Symbol;
public Momentum OneMonthPerformance { get; set; }
public Momentum ThreeMonthPerformance { get; set; }
public decimal ObjectiveScore
{
get
{
// we weight the one month performance higher
decimal weight1 = 100;
decimal weight2 = 75;
return (weight1 * OneMonthPerformance + weight2 * ThreeMonthPerformance) / (weight1 + weight2);
}
}
}
}