/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// In this algorithm we show how you can easily use the universe selection feature to fetch symbols /// to be traded using the BaseData custom data system in combination with the AddUniverse{T} method. /// AddUniverse{T} requires a function that will return the symbols to be traded. /// /// /// /// public class DropboxBaseDataUniverseSelectionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { // the changes from the previous universe selection private SecurityChanges _changes = SecurityChanges.None; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// /// /// /// public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; // Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees. // Commented so regression algorithm is more sensitive //Settings.MinimumOrderMarginPortfolioPercentage = 0.005m; SetStartDate(2017, 07, 06); SetEndDate(2018, 07, 04); var universe = AddUniverse(stockDataSource => { return stockDataSource.OfType().SelectMany(x => x.Symbols); }); var historicalSelectionData = History(universe, 3).ToList(); if (historicalSelectionData.Count != 3) { throw new RegressionTestException($"Unexpected universe data count {historicalSelectionData.Count}"); } foreach (var universeData in historicalSelectionData) { var stockDataSource = (StockDataSource)universeData.Single(); if (stockDataSource.Symbols.Count != 5) { throw new RegressionTestException($"Unexpected universe data receieved"); } } } /// /// Event - v3.0 DATA EVENT HANDLER: (Pattern) Basic template for user to override for receiving all subscription data in a single event /// /// /// TradeBars bars = slice.Bars; /// Ticks ticks = slice.Ticks; /// TradeBar spy = slice["SPY"]; /// List{Tick} aaplTicks = slice["AAPL"] /// Quandl oil = slice["OIL"] /// dynamic anySymbol = slice[symbol]; /// DataDictionary{Quandl} allQuandlData = slice.Get{Quand} /// Quandl oil = slice.Get{Quandl}("OIL") /// /// The current slice of data keyed by symbol string public override void OnData(Slice slice) { if (slice.Bars.Count == 0) return; if (_changes == SecurityChanges.None) return; // start fresh Liquidate(); var percentage = 1m / slice.Bars.Count; foreach (var tradeBar in slice.Bars.Values) { SetHoldings(tradeBar.Symbol, percentage); } // reset changes _changes = SecurityChanges.None; } /// /// Event fired each time the we add/remove securities from the data feed /// /// public override void OnSecuritiesChanged(SecurityChanges changes) { // each time our securities change we'll be notified here _changes = changes; } /// /// Our custom data type that defines where to get and how to read our backtest and live data. /// class StockDataSource : BaseDataCollection { private const string LiveUrl = @"https://www.dropbox.com/s/2l73mu97gcehmh7/daily-stock-picker-live.csv?dl=1"; private const string BacktestUrl = @"https://www.dropbox.com/s/ae1couew5ir3z9y/daily-stock-picker-backtest.csv?dl=1"; /// /// The symbols to be selected /// public List Symbols { get; set; } /// /// Required default constructor /// public StockDataSource() { // initialize our list to empty Symbols = new List(); } /// /// Return the URL string source of the file. This will be converted to a stream /// /// Configuration object /// Date of this source file /// true if we're in live mode, false for backtesting mode /// String URL of source file. public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode) { var url = isLiveMode ? LiveUrl : BacktestUrl; return new SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile, FileFormat.FoldingCollection); } /// /// Reader converts each line of the data source into BaseData objects. Each data type creates its own factory method, and returns a new instance of the object /// each time it is called. The returned object is assumed to be time stamped in the config.ExchangeTimeZone. /// /// Subscription data config setup object /// Line of the source document /// Date of the requested data /// true if we're in live mode, false for backtesting mode /// Instance of the T:BaseData object generated by this line of the CSV public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode) { try { // create a new StockDataSource and set the symbol using config.Symbol var stocks = new StockDataSource {Symbol = config.Symbol}; // break our line into csv pieces var csv = line.ToCsv(); if (isLiveMode) { // our live mode format does not have a date in the first column, so use date parameter stocks.Time = date; stocks.Symbols.AddRange(csv); } else { // our backtest mode format has the first column as date, parse it stocks.Time = DateTime.ParseExact(csv[0], "yyyyMMdd", null); // any following comma separated values are symbols, save them off stocks.Symbols.AddRange(csv.Skip(1)); } return stocks; } // return null if we encounter any errors catch { return null; } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 5269; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 3; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "6415"}, {"Average Win", "0.07%"}, {"Average Loss", "-0.07%"}, {"Compounding Annual Return", "15.655%"}, {"Drawdown", "10.500%"}, {"Expectancy", "0.071"}, {"Start Equity", "100000"}, {"End Equity", "115562.68"}, {"Net Profit", "15.563%"}, {"Sharpe Ratio", "0.844"}, {"Sortino Ratio", "0.788"}, {"Probabilistic Sharpe Ratio", "48.632%"}, {"Loss Rate", "46%"}, {"Win Rate", "54%"}, {"Profit-Loss Ratio", "0.98"}, {"Alpha", "0.008"}, {"Beta", "0.986"}, {"Annual Standard Deviation", "0.11"}, {"Annual Variance", "0.012"}, {"Information Ratio", "0.155"}, {"Tracking Error", "0.041"}, {"Treynor Ratio", "0.094"}, {"Total Fees", "$7460.54"}, {"Estimated Strategy Capacity", "$450000.00"}, {"Lowest Capacity Asset", "BNO UN3IMQ2JU1YD"}, {"Portfolio Turnover", "135.63%"}, {"Drawdown Recovery", "36"}, {"OrderListHash", "29c715831bd675f04226f9fd8855a52e"} }; } }