/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Data.Market; using QuantConnect.Interfaces; using System; using System.Collections.Generic; namespace QuantConnect.Algorithm.CSharp { /// /// Demonstration of payments for cash dividends in backtesting. When data normalization mode is set /// to "Raw" the dividends are paid as cash directly into your portfolio. /// /// /// /// public class DividendRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private decimal _sumOfDividends; private Symbol _symbol; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(1998, 01, 01); //Set Start Date SetEndDate(2006, 01, 01); //Set End Date SetCash(100000); //Set Strategy Cash // Find more symbols here: http://quantconnect.com/data _symbol = AddEquity("SPY", Resolution.Daily, dataNormalizationMode: DataNormalizationMode.Raw).Symbol; } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// TradeBars IDictionary object with your stock data public override void OnData(Slice slice) { if (Portfolio.Invested) return; SetHoldings(_symbol, .5); } /// /// Raises the data event. /// /// Data. public override void OnDividends(Dividends dividends) // update this to Dividends dictionary { var dividend = dividends[_symbol]; var holdings = Portfolio[_symbol]; Debug($"{dividend.Time.ToStringInvariant("o")} >> DIVIDEND >> {dividend.Symbol} - " + $"{dividend.Distribution.ToStringInvariant("C")} - {Portfolio.Cash} - " + $"{holdings.Price.ToStringInvariant("C")}" ); _sumOfDividends += dividend.Distribution * holdings.Quantity; } public override void OnEndOfAlgorithm() { // The expected value refers to sum of dividend payments if (Portfolio.TotalProfit != _sumOfDividends) { throw new RegressionTestException($"Total Profit: Expected {_sumOfDividends}. Actual {Portfolio.TotalProfit}"); } var expectNetProfit = _sumOfDividends - Portfolio.TotalFees; if (Portfolio.TotalNetProfit != expectNetProfit) { throw new RegressionTestException($"Total Net Profit: Expected {expectNetProfit}. Actual {Portfolio.TotalNetProfit}"); } if (Portfolio[_symbol].TotalDividends != _sumOfDividends) { throw new RegressionTestException($"{_symbol} Total Dividends: Expected {_sumOfDividends}. Actual {Portfolio[_symbol].TotalDividends}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 16077; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new() { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "2.354%"}, {"Drawdown", "28.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "120462.08"}, {"Net Profit", "20.462%"}, {"Sharpe Ratio", "-0.063"}, {"Sortino Ratio", "-0.078"}, {"Probabilistic Sharpe Ratio", "0.462%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.016"}, {"Beta", "0.521"}, {"Annual Standard Deviation", "0.083"}, {"Annual Variance", "0.007"}, {"Information Ratio", "-0.328"}, {"Tracking Error", "0.076"}, {"Treynor Ratio", "-0.01"}, {"Total Fees", "$2.56"}, {"Estimated Strategy Capacity", "$36000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "0.02%"}, {"Drawdown Recovery", "126"}, {"OrderListHash", "8068ff5f4917787e48d90fda94de340c"} }; } }