/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Data.Market; using QuantConnect.Interfaces; using QuantConnect.Indicators; using QuantConnect.Data; namespace QuantConnect.Algorithm.CSharp { /// /// Regression test to check custom indicators warms up properly /// when one of them define WarmUpPeriod parameter and the other doesn't /// public class CustomWarmUpPeriodIndicatorAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private CSMANotWarmUp _customNotWarmUp; private CSMAWithWarmUp _customWarmUp; private SimpleMovingAverage _customNotInherit; private SimpleMovingAverage _duplicateSMA; public override void Initialize() { SetStartDate(2013, 10, 7); SetEndDate(2013, 10, 11); AddEquity("SPY", Resolution.Second); // Create two custom indicators, where one of them defines WarmUpPeriod parameter _customNotWarmUp = new CSMANotWarmUp("_customNotWarmUp", 60); _customWarmUp = new CSMAWithWarmUp("_customWarmUp", 60); _customNotInherit = new SimpleMovingAverage("_customNotInherit", 60); // using 2nd SMA to match counterpart python algorithm ( CustomSMA + csharpIndicator ) // so that AlgorithmHistoryDataPoints are the same in both _duplicateSMA = new SimpleMovingAverage("_duplicateSMA", 60); // Register the daily data of "SPY" to automatically update both indicators RegisterIndicator("SPY", _customWarmUp, Resolution.Minute); RegisterIndicator("SPY", _customNotWarmUp, Resolution.Minute); RegisterIndicator("SPY", _customNotInherit, Resolution.Minute); RegisterIndicator("SPY", _duplicateSMA, Resolution.Minute); // Warm up _customWarmUp indicator WarmUpIndicator("SPY", _customWarmUp, Resolution.Minute); // Check _customWarmUp indicator has already been warmed up with the requested data if (!_customWarmUp.IsReady) { throw new RegressionTestException("_customWarmUp indicator was expected to be ready"); } if (_customWarmUp.Samples != 60) { throw new RegressionTestException("_customWarmUp indicator was expected to have processed 60 datapoints already"); } // Try to warm up _customNotWarmUp indicator. It's expected from LEAN to skip the warm up process // because this indicator doesn't implement IIndicatorWarmUpPeriodProvider WarmUpIndicator("SPY", _customNotWarmUp, Resolution.Minute); // Check _customNotWarmUp indicator is not ready, because the warm up process was skipped if (_customNotWarmUp.IsReady) { throw new RegressionTestException("_customNotWarmUp indicator wasn't expected to be warmed up"); } WarmUpIndicator("SPY", _customNotInherit, Resolution.Minute); // Check _customWarmUp indicator has already been warmed up with the requested data if (!_customNotInherit.IsReady) { throw new RegressionTestException("_customNotInherit indicator was expected to be ready"); } if (_customNotInherit.Samples != 60) { throw new RegressionTestException("_customNotInherit indicator was expected to have processed 60 datapoints already"); } WarmUpIndicator("SPY", _duplicateSMA, Resolution.Minute); // Check _customWarmUp indicator has already been warmed up with the requested data if (!_duplicateSMA.IsReady) { throw new RegressionTestException("_duplicateSMA indicator was expected to be ready"); } if (_duplicateSMA.Samples != 60) { throw new RegressionTestException("_duplicateSMA indicator was expected to have processed 60 datapoints already"); } } public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings("SPY", 1); } if (Time.Second == 0) { // Compute the difference between the indicators values var diff = Math.Abs(_customNotWarmUp.Current.Value - _customWarmUp.Current.Value); diff += Math.Abs(_customNotInherit.Current.Value - _customNotWarmUp.Current.Value); diff += Math.Abs(_customNotInherit.Current.Value - _customWarmUp.Current.Value); diff += Math.Abs(_duplicateSMA.Current.Value - _customWarmUp.Current.Value); diff += Math.Abs(_duplicateSMA.Current.Value - _customNotWarmUp.Current.Value); diff += Math.Abs(_duplicateSMA.Current.Value - _customNotInherit.Current.Value); // Check _customNotWarmUp indicator is ready when the number of samples is bigger than its period if (_customNotWarmUp.IsReady != (_customNotWarmUp.Samples >= 60)) { throw new RegressionTestException("_customNotWarmUp indicator was expected to be ready when the number of samples were bigger that its WarmUpPeriod parameter"); } // Check their values are the same when both are ready if (diff > 1e-10m && _customNotWarmUp.IsReady && _customWarmUp.IsReady) { throw new RegressionTestException($"The values of the indicators are not the same. The difference is {diff}"); } } } /// /// Custom implementation of SimpleMovingAverage. /// Represents the traditional simple moving average indicator (SMA) without WarmUpPeriod parameter defined /// private class CSMANotWarmUp : IndicatorBase { private Queue _queue; private int _period; public CSMANotWarmUp(string name, int period) : base(name) { _queue = new Queue(); _period = period; } public override bool IsReady => _queue.Count == _period; protected override decimal ComputeNextValue(IBaseData input) { _queue.Enqueue(input); if (_queue.Count > _period) { _queue.Dequeue(); } var items = (_queue.ToArray()); var sum = 0m; Array.ForEach(items, i => sum += i.Value); return sum / _queue.Count; } } /// /// Custom implementation of SimpleMovingAverage. /// Represents the traditional simple moving average indicator (SMA) with WarmUpPeriod defined /// private class CSMAWithWarmUp : CSMANotWarmUp, IIndicatorWarmUpPeriodProvider { public CSMAWithWarmUp(string name, int period) : base(name, period) { WarmUpPeriod = period; } public int WarmUpPeriod { get; private set; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 234043; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 360; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "272.157%"}, {"Drawdown", "2.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101694.38"}, {"Net Profit", "1.694%"}, {"Sharpe Ratio", "8.863"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "67.609%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.003"}, {"Beta", "0.998"}, {"Annual Standard Deviation", "0.222"}, {"Annual Variance", "0.049"}, {"Information Ratio", "-14.534"}, {"Tracking Error", "0.001"}, {"Treynor Ratio", "1.972"}, {"Total Fees", "$3.45"}, {"Estimated Strategy Capacity", "$310000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "19.96%"}, {"Drawdown Recovery", "2"}, {"OrderListHash", "8c925e7c6c10ff1da3a40669accba91a"} }; } }